論文の概要: A Survey on Future Frame Synthesis: Bridging Deterministic and Generative Approaches
- arxiv url: http://arxiv.org/abs/2401.14718v5
- Date: Fri, 08 Nov 2024 10:51:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-11 14:52:25.300370
- Title: A Survey on Future Frame Synthesis: Bridging Deterministic and Generative Approaches
- Title(参考訳): 未来のフレーム合成に関する調査:ブリッジング決定論的および生成的アプローチ
- Authors: Ruibo Ming, Zhewei Huang, Zhuoxuan Ju, Jianming Hu, Lihui Peng, Shuchang Zhou,
- Abstract要約: Future Frame Synthesis (FFS) は、モデルが既存のコンテンツに基づいて将来のフレームのシーケンスを生成することを可能にすることを目的としている。
この調査は、広く使われているデータセットやアルゴリズムを含む、FSFの歴史的および現代的著作を包括的にレビューする。
- 参考スコア(独自算出の注目度): 8.131773189457077
- License:
- Abstract: Future Frame Synthesis (FFS) aims to enable models to generate sequences of future frames based on existing content. This survey comprehensively reviews historical and contemporary works in FFS, including widely used datasets and algorithms. It scrutinizes the challenges and the evolving landscape of FFS within computer vision, with a focus on the transition from deterministic to generative synthesis methodologies. Our taxonomy highlights the significant advancements and shifts in approach, underscoring the growing importance of generative models in achieving realistic and diverse future frame predictions.
- Abstract(参考訳): Future Frame Synthesis (FFS) は、モデルが既存のコンテンツに基づいて将来のフレームのシーケンスを生成することを可能にすることを目的としている。
この調査は、広く使われているデータセットやアルゴリズムを含む、FSFの歴史的および現代的著作を包括的にレビューする。
コンピュータビジョンにおけるFFSの課題と進化する展望を精査し、決定論的から生成的合成方法論への移行に焦点を当てた。
我々の分類学は、現実的で多様な将来のフレーム予測を達成する上で、生成モデルの重要性が増大していることを強調し、アプローチの大幅な進歩とシフトを強調している。
関連論文リスト
- A Comprehensive Taxonomy and Analysis of Talking Head Synthesis: Techniques for Portrait Generation, Driving Mechanisms, and Editing [8.171572460041823]
トーキングヘッド合成は、特定のコンテンツによって駆動される静止画像からポートレートビデオを生成する高度な方法である。
本調査は,3つの重要な領域 – ポートレート生成,駆動機構,編集技術 – に分類し,その技術を体系的にレビューする。
論文 参考訳(メタデータ) (2024-06-15T08:14:59Z) - State-Space Modeling in Long Sequence Processing: A Survey on Recurrence in the Transformer Era [59.279784235147254]
このサーベイは、シーケンシャルなデータ処理の反復モデルに基づく最新のアプローチの詳細な概要を提供する。
新たなイメージは、標準のバックプロパゲーション・オブ・タイムから外れた学習アルゴリズムによって構成される、新しいルートを考える余地があることを示唆している。
論文 参考訳(メタデータ) (2024-06-13T12:51:22Z) - Fine-Grained Zero-Shot Learning: Advances, Challenges, and Prospects [84.36935309169567]
ゼロショット学習(ZSL)における微粒化解析の最近の進歩を概観する。
まず、各カテゴリの詳細な分析を行い、既存の手法と手法の分類について述べる。
次に、ベンチマークを要約し、公開データセット、モデル、実装、およびライブラリとしての詳細について説明する。
論文 参考訳(メタデータ) (2024-01-31T11:51:24Z) - Masked Modeling for Self-supervised Representation Learning on Vision
and Beyond [69.64364187449773]
仮面モデリングは、トレーニング中に比例的にマスキングされる元のデータの一部を予測する、独特なアプローチとして現れてきた。
マスクモデリングにおけるテクニックの詳細については,多様なマスキング戦略,ターゲット回復,ネットワークアーキテクチャなどについて詳述する。
我々は、現在の手法の限界について議論し、マスクモデリング研究を進めるためのいくつかの道のりを指摘した。
論文 参考訳(メタデータ) (2023-12-31T12:03:21Z) - Towards the Unification of Generative and Discriminative Visual
Foundation Model: A Survey [30.528346074194925]
視覚基礎モデル(VFM)はコンピュータビジョンの基盤となる発展の触媒となっている。
本稿では,VFMの重要軌道を概説し,その拡張性と生成タスクの熟練性を強調した。
今後のイノベーションの重要な方向は、生成的および差別的パラダイムの融合である。
論文 参考訳(メタデータ) (2023-12-15T19:17:15Z) - Towards Graph Foundation Models: A Survey and Beyond [66.37994863159861]
ファンデーションモデルは、さまざまな人工知能アプリケーションにおいて重要なコンポーネントとして現れてきた。
基礎モデルがグラフ機械学習研究者を一般化し、適応させる能力は、新しいグラフ学習パラダイムを開発する可能性について議論する。
本稿では,グラフ基礎モデル(GFM)の概念を紹介し,その重要な特徴と基礎技術について概説する。
論文 参考訳(メタデータ) (2023-10-18T09:31:21Z) - A supervised generative optimization approach for tabular data [2.5311562666866494]
本研究は,新しい合成データ生成フレームワークを提案する。
特定の下流タスクに適した教師ありコンポーネントを統合し、メタラーニングアプローチを用いて既存の合成分布の最適混合分布を学習する。
論文 参考訳(メタデータ) (2023-09-10T16:56:46Z) - Few Shot Semantic Segmentation: a review of methodologies, benchmarks, and open challenges [5.0243930429558885]
Few-Shot Semanticはコンピュータビジョンの新しいタスクであり、いくつかの例で新しいセマンティッククラスをセグメンテーションできるモデルを設計することを目的としている。
本稿では、Few-Shot Semanticの総合的な調査からなり、その進化を辿り、様々なモデル設計を探求する。
論文 参考訳(メタデータ) (2023-04-12T13:07:37Z) - Adversarial Text-to-Image Synthesis: A Review [7.593633267653624]
我々は,5年前に始まった対人テキスト・画像合成モデルの状況,その発展を文脈的に把握し,その監督レベルに基づく分類法を提案する。
我々は,より優れたデータセットや評価指標の開発から,アーキテクチャ設計やモデルトレーニングの改善の可能性に至るまで,テキスト・ツー・イメージ合成モデルの評価,欠点の強調,新たな研究領域の特定に向けた現在の戦略を批判的に検討する。
本総説は, テキストと画像の合成に焦点をあてた, 生成的敵ネットワークに関する過去の調査を補完するものである。
論文 参考訳(メタデータ) (2021-01-25T09:58:36Z) - A Survey of Embedding Space Alignment Methods for Language and Knowledge
Graphs [77.34726150561087]
単語,文,知識グラフの埋め込みアルゴリズムに関する現在の研究状況について調査する。
本稿では、関連するアライメント手法の分類と、この研究分野で使用されるベンチマークデータセットについて論じる。
論文 参考訳(メタデータ) (2020-10-26T16:08:13Z) - Future Urban Scenes Generation Through Vehicles Synthesis [90.1731992199415]
本研究では,都市景観の視覚的外観を予測するためのディープラーニングパイプラインを提案する。
ループには解釈可能な情報が含まれ、各アクターは独立してモデル化される。
従来のCityFlowのシーン生成手法に比べて,このアプローチが優れていることを示す。
論文 参考訳(メタデータ) (2020-07-01T08:40:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。