論文の概要: Improving Medical Reasoning through Retrieval and Self-Reflection with Retrieval-Augmented Large Language Models
- arxiv url: http://arxiv.org/abs/2401.15269v3
- Date: Tue, 18 Jun 2024 02:10:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-20 04:34:53.950965
- Title: Improving Medical Reasoning through Retrieval and Self-Reflection with Retrieval-Augmented Large Language Models
- Title(参考訳): 検索型大規模言語モデルによる検索・自己回帰による医療推論の改善
- Authors: Minbyul Jeong, Jiwoong Sohn, Mujeen Sung, Jaewoo Kang,
- Abstract要約: Self-BioRAGは、説明文の生成、ドメイン固有の文書の検索、生成したレスポンスの自己参照を専門とする、バイオメディカルテキストに信頼できるフレームワークである。
84kのバイオメディカル・インストラクション・セットを用いて、カスタマイズされた反射トークンで生成された説明を評価できるセルフビオRAGを訓練する。
- 参考スコア(独自算出の注目度): 18.984165679347026
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent proprietary large language models (LLMs), such as GPT-4, have achieved a milestone in tackling diverse challenges in the biomedical domain, ranging from multiple-choice questions to long-form generations. To address challenges that still cannot be handled with the encoded knowledge of LLMs, various retrieval-augmented generation (RAG) methods have been developed by searching documents from the knowledge corpus and appending them unconditionally or selectively to the input of LLMs for generation. However, when applying existing methods to different domain-specific problems, poor generalization becomes apparent, leading to fetching incorrect documents or making inaccurate judgments. In this paper, we introduce Self-BioRAG, a framework reliable for biomedical text that specializes in generating explanations, retrieving domain-specific documents, and self-reflecting generated responses. We utilize 84k filtered biomedical instruction sets to train Self-BioRAG that can assess its generated explanations with customized reflective tokens. Our work proves that domain-specific components, such as a retriever, domain-related document corpus, and instruction sets are necessary for adhering to domain-related instructions. Using three major medical question-answering benchmark datasets, experimental results of Self-BioRAG demonstrate significant performance gains by achieving a 7.2% absolute improvement on average over the state-of-the-art open-foundation model with a parameter size of 7B or less. Overall, we analyze that Self-BioRAG finds the clues in the question, retrieves relevant documents if needed, and understands how to answer with information from retrieved documents and encoded knowledge as a medical expert does. We release our data and code for training our framework components and model weights (7B and 13B) to enhance capabilities in biomedical and clinical domains.
- Abstract(参考訳): GPT-4のような最近のプロプライエタリな大規模言語モデル(LLM)は、多項目質問から長文世代まで、バイオメディカル領域における多様な課題に対処するマイルストーンを達成している。
LLMの符号化された知識でまだ処理できない課題に対処するために、知識コーパスから文書を検索し、LLMの入力に無条件または選択的に付加することにより、様々な検索拡張生成法(RAG)が開発されている。
しかし、既存の手法を異なるドメイン固有の問題に適用すると、一般化の貧弱さが明らかになり、不正な文書の取得や不正確な判断につながる。
本稿では, 説明文の生成, ドメイン固有文書の検索, 生成した応答の自己再生を専門とする, バイオメディカルテキストに信頼性のあるフレームワークであるSelf-BioRAGを紹介する。
84kのバイオメディカル・インストラクション・セットを用いて、カスタマイズされた反射トークンで生成された説明を評価できるセルフビオRAGを訓練する。
本研究は,レトリバーやドメイン関連文書コーパス,命令セットなどのドメイン固有のコンポーネントが,ドメイン関連命令の付着に必要であることを示す。
3つの主要な医療質問答えベンチマークデータセットを用いて、Self-BioRAGの実験結果は、7B以下のパラメータサイズを持つ最先端のオープンバウンダレーションモデルに対して平均で7.2%の絶対的な改善を達成し、大きなパフォーマンス向上を示した。
全体として、Self-BioRAGは質問の手がかりを見つけ、必要なら関連文書を検索し、検索した文書から情報に答える方法を理解し、医療専門家としての知識を符号化する。
バイオメディカルおよび臨床領域の能力を高めるために、フレームワークコンポーネントとモデルウェイト(7Bと13B)をトレーニングするためのデータとコードをリリースする。
関連論文リスト
- Comprehensive and Practical Evaluation of Retrieval-Augmented Generation Systems for Medical Question Answering [70.44269982045415]
Retrieval-augmented Generation (RAG) は,大規模言語モデル (LLM) の性能向上のための有望なアプローチとして登場した。
医療用QAデータセットに様々な補助的要素を提供するMedRGB(MedRGB)を導入する。
実験結果から,検索した文書のノイズや誤情報の処理能力に限界があることが判明した。
論文 参考訳(メタデータ) (2024-11-14T06:19:18Z) - NeuroSym-BioCAT: Leveraging Neuro-Symbolic Methods for Biomedical Scholarly Document Categorization and Question Answering [0.14999444543328289]
本稿では,最適化されたトピックモデリングフレームワークであるOVB-LDAとBI-POP CMA-ES最適化技術を統合し,学術文書の抽象分類を強化した新しい手法を提案する。
我々は、ドメイン固有データに基づいて微調整された蒸留MiniLMモデルを用いて、高精度な回答抽出を行う。
論文 参考訳(メタデータ) (2024-10-29T14:45:12Z) - AutoMIR: Effective Zero-Shot Medical Information Retrieval without Relevance Labels [19.90354530235266]
本稿では,自己学習仮説文書埋め込み (SL-HyDE) という新しい手法を導入し,この問題に対処する。
SL-HyDEは、与えられたクエリに基づいて仮説文書を生成するために、大きな言語モデル(LLM)をジェネレータとして利用する。
実世界の医療シナリオを基盤とした総合的な評価フレームワークとして,中国医療情報検索ベンチマーク(CMIRB)を提案する。
論文 参考訳(メタデータ) (2024-10-26T02:53:20Z) - GMAI-MMBench: A Comprehensive Multimodal Evaluation Benchmark Towards General Medical AI [67.09501109871351]
LVLM(Large Vision-Language Model)は、画像、テキスト、生理学的信号などの多様なデータタイプを扱うことができる。
GMAI-MMBenchは、よく分類されたデータ構造と、これまででもっとも包括的な一般医療用AIベンチマークである。
38の医療画像モダリティ、18の臨床関連タスク、18の部門、視覚質問回答(VQA)フォーマットの4つの知覚的粒度からなる284のデータセットで構成されている。
論文 参考訳(メタデータ) (2024-08-06T17:59:21Z) - SeRTS: Self-Rewarding Tree Search for Biomedical Retrieval-Augmented Generation [50.26966969163348]
大規模言語モデル(LLM)は,検索増強世代(RAG)の進展に伴い,生物医学領域において大きな可能性を示した。
既存の検索強化アプローチは、様々なクエリやドキュメント、特に医療知識クエリに対処する上で、課題に直面している。
モンテカルロ木探索(MCTS)と自己回帰パラダイムに基づく自己回帰木探索(SeRTS)を提案する。
論文 参考訳(メタデータ) (2024-06-17T06:48:31Z) - BiomedRAG: A Retrieval Augmented Large Language Model for Biomedicine [19.861178160437827]
大規模言語モデル(LLM)は、バイオメディカルおよび医療分野における様々な応用のための重要なリソースとして急速に現れてきた。
textscBiomedRAGは5つのバイオメディカルNLPタスクで優れたパフォーマンスを実現している。
textscBiomedRAG は、GIT と ChemProt コーパスにおいて、マイクロF1スコアが 81.42 と 88.83 の他のトリプル抽出システムより優れている。
論文 参考訳(メタデータ) (2024-05-01T12:01:39Z) - Graph-Based Retriever Captures the Long Tail of Biomedical Knowledge [2.2814097119704058]
大規模言語モデル(LLM)は、膨大な知識を要約して提示することで、情報の検索方法を変えつつある。
LLMはトレーニングセットから最も頻繁に見られる情報を強調し、まれな情報を無視する傾向があります。
本稿では,これらのクラスタをダウンサンプリングし,情報過負荷問題を緩和するために知識グラフを活用する新しい情報検索手法を提案する。
論文 参考訳(メタデータ) (2024-02-19T18:31:11Z) - Diversifying Knowledge Enhancement of Biomedical Language Models using
Adapter Modules and Knowledge Graphs [54.223394825528665]
我々は、軽量なアダプターモジュールを用いて、構造化された生体医学的知識を事前訓練された言語モデルに注入するアプローチを開発した。
バイオメディカル知識システムUMLSと新しいバイオケミカルOntoChemの2つの大きなKGと、PubMedBERTとBioLinkBERTの2つの著名なバイオメディカルPLMを使用している。
計算能力の要件を低く保ちながら,本手法がいくつかの事例において性能改善につながることを示す。
論文 参考訳(メタデータ) (2023-12-21T14:26:57Z) - EBOCA: Evidences for BiOmedical Concepts Association Ontology [55.41644538483948]
本論文は,生物医学領域の概念とそれらの関連性を記述するオントロジーであるEBOCAと,それらの関連性を支持するエビデンスを提案する。
DISNETのサブセットから得られるテストデータとテキストからの自動アソシエーション抽出が変換され、実際のシナリオで使用できる知識グラフが作成されるようになった。
論文 参考訳(メタデータ) (2022-08-01T18:47:03Z) - Recent Advances in Automated Question Answering In Biomedical Domain [0.06922389632860546]
過去数十年間、知識の獲得が急増しており、その結果、バイオメディシン分野における新しい科学論文が指数関数的に増加してきた。
ドメインの専門家であっても、ドメイン内のすべての情報を追跡することは困難になっています。
商用検索エンジンの改善により、ユーザーはクエリーを入力し、クエリーに最も関連性の高いドキュメントの小さなセットを得ることができる。
これにより、ユーザが提供する自然言語の質問に対して、正確かつ正確な答えを見つけることを目的とした効率的なQAシステムの開発が必要になった。
論文 参考訳(メタデータ) (2021-11-10T20:51:29Z) - Self-supervised Answer Retrieval on Clinical Notes [68.87777592015402]
本稿では,ドメイン固有パスマッチングのためのトランスフォーマー言語モデルをトレーニングするためのルールベースのセルフスーパービジョンであるCAPRを紹介する。
目的をトランスフォーマーベースの4つのアーキテクチャ、コンテキスト文書ベクトル、ビ-、ポリエンコーダ、クロスエンコーダに適用する。
本稿では,ドメイン固有パスの検索において,CAPRが強いベースラインを上回り,ルールベースおよび人間ラベル付きパスを効果的に一般化することを示す。
論文 参考訳(メタデータ) (2021-08-02T10:42:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。