論文の概要: Proto-MPC: An Encoder-Prototype-Decoder Approach for Quadrotor Control in Challenging Winds
- arxiv url: http://arxiv.org/abs/2401.15508v2
- Date: Tue, 21 May 2024 19:49:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-25 11:26:41.670528
- Title: Proto-MPC: An Encoder-Prototype-Decoder Approach for Quadrotor Control in Challenging Winds
- Title(参考訳): エンコーダ-プロトタイプ-デコーダアプローチによる混在する風のクアドロレータ制御
- Authors: Yuliang Gu, Sheng Cheng, Naira Hovakimyan,
- Abstract要約: プロトタイプデコーダ(EPD)と呼ばれるマルチタスクメタ学習手法を提案する。
本研究では,EPDモデルをモデル予測制御問題(Proto-MPC)に統合し,動的に変化するタスクのスペクトルに適応し,操作する能力を高める。
提案手法をシミュレーションで検証し, 静的かつ空間的に変化する横風を受けるクアロータの軌道追尾におけるProto-MPCの頑健な性能を示す。
- 参考スコア(独自算出の注目度): 8.95629428803144
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quadrotors are increasingly used in the evolving field of aerial robotics for their agility and mechanical simplicity. However, inherent uncertainties, such as aerodynamic effects coupled with quadrotors' operation in dynamically changing environments, pose significant challenges for traditional, nominal model-based control designs. We propose a multi-task meta-learning method called Encoder-Prototype-Decoder (EPD), which has the advantage of effectively balancing shared and distinctive representations across diverse training tasks. Subsequently, we integrate the EPD model into a model predictive control problem (Proto-MPC) to enhance the quadrotor's ability to adapt and operate across a spectrum of dynamically changing tasks with an efficient online implementation. We validate the proposed method in simulations, which demonstrates Proto-MPC's robust performance in trajectory tracking of a quadrotor being subject to static and spatially varying side winds.
- Abstract(参考訳): クアドロターは、機動性や機械的な単純さのために、進化する航空ロボティクスの分野でますます使われてきている。
しかし、動的に変化する環境において、空気力学的効果と四重項の操作が組み合わさったような固有の不確実性は、伝統的で名目上のモデルに基づく制御設計に重大な課題をもたらす。
本研究では,多種多様な学習課題間で共有表現と特徴表現を効果的にバランスする,Encoder-Prototype-Decoder (EPD) と呼ばれるマルチタスクメタ学習手法を提案する。
その後、EPDモデルをモデル予測制御問題(Proto-MPC)に統合し、効率的なオンライン実装により動的に変化するタスクに適応し、操作する能力を高める。
提案手法をシミュレーションで検証し, 静的かつ空間的に変化する横風を受けるクアロータの軌道追尾におけるProto-MPCの頑健な性能を示す。
関連論文リスト
- MASSFormer: Mobility-Aware Spectrum Sensing using Transformer-Driven
Tiered Structure [3.6194127685460553]
モビリティを意識したトランスフォーマー駆動構造(MASSFormer)をベースとした協調センシング手法を開発した。
本稿では,モバイルプライマリユーザ(PU)とセカンダリユーザ(SU)の動的シナリオについて考察する。
提案手法は, 堅牢性を示すために, 不完全な報告チャネルのシナリオ下で試験される。
論文 参考訳(メタデータ) (2024-09-26T05:25:25Z) - Dynamic Motion Synthesis: Masked Audio-Text Conditioned Spatio-Temporal Transformers [13.665279127648658]
本研究は,複数モーダルに条件付き全体動き列を同時に生成する新しい動き生成フレームワークを提案する。
空間的注意機構とトークン批評家を統合することで、生成した動きの一貫性と自然性を確保することができる。
論文 参考訳(メタデータ) (2024-09-03T04:19:27Z) - Traj-MAE: Masked Autoencoders for Trajectory Prediction [69.7885837428344]
軌道予測は、危険を予測して信頼性の高い自動運転システムを構築する上で重要な課題である。
本稿では,運転環境におけるエージェントの複雑な動作をよりよく表現する,軌道予測のための効率的なマスク付きオートエンコーダを提案する。
複数エージェント設定と単一エージェント設定の両方の実験結果から,Traj-MAEが最先端手法と競合する結果が得られることが示された。
論文 参考訳(メタデータ) (2023-03-12T16:23:27Z) - Multi-Scale Control Signal-Aware Transformer for Motion Synthesis
without Phase [72.01862340497314]
マルチスケール制御信号認識変換器(MCS-T)を提案する。
MCS-Tは補助情報を用いてメソッドが生成した動作に匹敵する動作をうまく生成できる。
論文 参考訳(メタデータ) (2023-03-03T02:56:44Z) - Designing a Robust Low-Level Agnostic Controller for a Quadrotor with
Actor-Critic Reinforcement Learning [0.38073142980732994]
ソフトアクター・クリティカルに基づく低レベルウェイポイント誘導制御器の訓練段階におけるドメインランダム化を提案する。
トレーニング中の四元数力学に一定の不確実性を導入することにより、より大規模な四元数パラメータを用いて提案課題を実行することができる制御器が得られることを示す。
論文 参考訳(メタデータ) (2022-10-06T14:58:19Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - Proximal Policy Optimization-based Transmit Beamforming and Phase-shift
Design in an IRS-aided ISAC System for the THz Band [90.45915557253385]
テラヘルツ(THz)帯で動作するIRS支援統合センシング・通信(ISAC)システムを提案し,システム容量を最大化する。
透過ビームフォーミングと位相シフト設計はエルゴード制約を伴う普遍最適化問題に変換される。
論文 参考訳(メタデータ) (2022-03-21T09:15:18Z) - OSCAR: Data-Driven Operational Space Control for Adaptive and Robust
Robot Manipulation [50.59541802645156]
オペレーショナル・スペース・コントロール(OSC)は、操作のための効果的なタスクスペース・コントローラとして使われてきた。
本稿では,データ駆動型OSCのモデル誤差を補償するOSC for Adaptation and Robustness (OSCAR)を提案する。
本手法は,様々なシミュレーション操作問題に対して評価し,制御器のベースラインの配列よりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2021-10-02T01:21:38Z) - Multimodal VAE Active Inference Controller [0.0]
本稿では,産業用アームのアクティブ推論トルク制御装置を提案する。
線形結合型マルチモーダル変分オートエンコーダを用いたマルチモーダル状態表現学習を含む。
結果は、表現力の増加による目標方向到達の追跡と制御の改善を示した。
論文 参考訳(メタデータ) (2021-03-07T18:00:27Z) - Meta-Reinforcement Learning for Adaptive Motor Control in Changing Robot
Dynamics and Environments [3.5309638744466167]
この研究は、ロバストな移動のための異なる条件に制御ポリシーを適応させるメタラーニングアプローチを開発した。
提案手法は, インタラクションモデルを更新し, 推定された状態-作用軌道のアクションをサンプル化し, 最適なアクションを適用し, 報酬を最大化する。
論文 参考訳(メタデータ) (2021-01-19T12:57:12Z) - Goal-Conditioned End-to-End Visuomotor Control for Versatile Skill
Primitives [89.34229413345541]
本稿では,制御器とその条件をエンドツーエンドに学習することで,落とし穴を回避する条件付け手法を提案する。
本モデルでは,ロボットの動きのダイナミックな画像表現に基づいて,複雑な動作シーケンスを予測する。
代表的MPCおよびILベースラインに対するタスク成功の大幅な改善を報告した。
論文 参考訳(メタデータ) (2020-03-19T15:04:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。