Quantum Simulation of Conical Intersections
- URL: http://arxiv.org/abs/2401.15565v1
- Date: Sun, 28 Jan 2024 04:14:43 GMT
- Title: Quantum Simulation of Conical Intersections
- Authors: Yuchen Wang and David A. Mazziotti
- Abstract summary: We show how the conical intersections (CIs) can be correctly described on quantum devices.
A hybrid quantum-classical procedure is used to locate the seam of CIs.
Results on noisy intermediate-scale quantum devices showcase the potential of quantum computers in dealing with problems in nonadiabatic chemistry.
- Score: 7.85411031368342
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We explore the simulation of conical intersections (CIs) on quantum devices,
setting the groundwork for potential applications in nonadiabatic quantum
dynamics within molecular systems. The intersecting potential energy surfaces
of H$_{3}^{+}$ are computed from a variance-based contracted quantum
eigensolver. We show how the CIs can be correctly described on quantum devices
using wavefunctions generated by the anti-Hermitian contracted Schr{\"o}dinger
equation ansatz, which is a unitary transformation of wavefunctions that
preserves the topography of CIs. A hybrid quantum-classical procedure is used
to locate the seam of CIs. Additionally, we discuss the quantum implementation
of the adiabatic to diabatic transformation and its relation to the geometric
phase effect. Results on noisy intermediate-scale quantum devices showcase the
potential of quantum computers in dealing with problems in nonadiabatic
chemistry.
Related papers
- Simulating Chemistry on Bosonic Quantum Devices [30.89742280590898]
Bosonic quantum devices offer a novel approach to realize quantum computations.
We review recent progress and future potential of using bosonic quantum devices for addressing a wide range of challenging chemical problems.
arXiv Detail & Related papers (2024-04-16T01:54:50Z) - Quantum computation of conical intersections on a programmable superconducting quantum processor [10.064448021157139]
Conical intersections (CIs) are pivotal in many photochemical processes.
We present the first successful realization of a hybrid quantum-classical state-average complete active space self-consistent method.
arXiv Detail & Related papers (2024-02-20T04:12:40Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - TenCirChem: An Efficient Quantum Computational Chemistry Package for the
NISQ Era [11.231358835691962]
TenCirChem is an open-source library for variation simulatingal quantum algorithms for quantum computational chemistry.
TenCirChem shows high performance on the simulation of unitary coupled-cluster circuits.
TenCirChem is capable of running real quantum hardware experiments.
arXiv Detail & Related papers (2023-03-20T01:47:45Z) - Quantum Computation of Phase Transition in Interacting Scalar Quantum
Field Theory [0.0]
It has been demonstrated that the critical point of the phase transition in scalar quantum field theory can be approximated via a Gaussian Effective Potential (GEP)
We perform quantum computations with various lattice sizes and obtain evidence of a transition from a symmetric to a symmetry-broken phase.
We implement the ten-site case on IBM quantum hardware using the Variational Quantum Eigensolver (VQE) algorithm to minimize the GEP.
arXiv Detail & Related papers (2023-03-04T14:11:37Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Calculating nonadiabatic couplings and Berry's phase by variational
quantum eigensolvers [0.0]
The variational quantum eigensolver (VQE) is an algorithm to find eigenenergies and eigenstates of systems in quantum chemistry and quantum many-body physics.
We propose an extension of the VQE to calculate the nonadiabatic couplings of molecules in quantum chemical systems and Berry's phase in quantum many-body systems.
arXiv Detail & Related papers (2020-03-03T18:51:54Z) - Probing the Universality of Topological Defect Formation in a Quantum
Annealer: Kibble-Zurek Mechanism and Beyond [46.39654665163597]
We report on experimental tests of topological defect formation via the one-dimensional transverse-field Ising model.
We find that the quantum simulator results can indeed be explained by the KZM for open-system quantum dynamics with phase-flip errors.
This implies that the theoretical predictions of the generalized KZM theory, which assumes isolation from the environment, applies beyond its original scope to an open system.
arXiv Detail & Related papers (2020-01-31T02:55:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.