Within-basket Recommendation via Neural Pattern Associator
- URL: http://arxiv.org/abs/2401.16433v2
- Date: Thu, 14 Mar 2024 21:08:34 GMT
- Title: Within-basket Recommendation via Neural Pattern Associator
- Authors: Kai Luo, Tianshu Shen, Lan Yao, Ga Wu, Aaron Liblong, Istvan Fehervari, Ruijian An, Jawad Ahmed, Harshit Mishra, Charu Pujari,
- Abstract summary: Within-basket recommendation (WBR) refers to the task of recommending items to the end of completing a non-empty shopping basket.
This paper presents Neural Pattern Associator (NPA), a deep item-association-mining model that explicitly models user intentions.
- Score: 6.474720465174676
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Within-basket recommendation (WBR) refers to the task of recommending items to the end of completing a non-empty shopping basket during a shopping session. While the latest innovations in this space demonstrate remarkable performance improvement on benchmark datasets, they often overlook the complexity of user behaviors in practice, such as 1) co-existence of multiple shopping intentions, 2) multi-granularity of such intentions, and 3) interleaving behavior (switching intentions) in a shopping session. This paper presents Neural Pattern Associator (NPA), a deep item-association-mining model that explicitly models the aforementioned factors. Specifically, inspired by vector quantization, the NPA model learns to encode common user intentions (or item-combination patterns) as quantized representations (a.k.a. codebook), which permits identification of users's shopping intentions via attention-driven lookup during the reasoning phase. This yields coherent and self-interpretable recommendations. We evaluated the proposed NPA model across multiple extensive datasets, encompassing the domains of grocery e-commerce (shopping basket completion) and music (playlist extension), where our quantitative evaluations show that the NPA model significantly outperforms a wide range of existing WBR solutions, reflecting the benefit of explicitly modeling complex user intentions.
Related papers
- MMGRec: Multimodal Generative Recommendation with Transformer Model [81.61896141495144]
MMGRec aims to introduce a generative paradigm into multimodal recommendation.
We first devise a hierarchical quantization method Graph CF-RQVAE to assign Rec-ID for each item from its multimodal information.
We then train a Transformer-based recommender to generate the Rec-IDs of user-preferred items based on historical interaction sequences.
arXiv Detail & Related papers (2024-04-25T12:11:27Z) - Knowledge-Aware Multi-Intent Contrastive Learning for Multi-Behavior Recommendation [6.522900133742931]
Multi-behavioral recommendation provides users with more accurate choices based on diverse behaviors, such as view, add to cart, and purchase.
We propose a novel model: Knowledge-Aware Multi-Intent Contrastive Learning (KAMCL) model.
This model uses relationships in the knowledge graph to construct intents, aiming to mine the connections between users' multi-behaviors from the perspective of intents to achieve more accurate recommendations.
arXiv Detail & Related papers (2024-04-18T08:39:52Z) - Hypergraph Enhanced Knowledge Tree Prompt Learning for Next-Basket
Recommendation [50.55786122323965]
Next-basket recommendation (NBR) aims to infer the items in the next basket given the corresponding basket sequence.
HEKP4NBR transforms the knowledge graph (KG) into prompts, namely Knowledge Tree Prompt (KTP), to help PLM encode the Out-Of-Vocabulary (OOV) item IDs.
A hypergraph convolutional module is designed to build a hypergraph based on item similarities measured by an MoE model from multiple aspects.
arXiv Detail & Related papers (2023-12-26T02:12:21Z) - Coherent Entity Disambiguation via Modeling Topic and Categorical
Dependency [87.16283281290053]
Previous entity disambiguation (ED) methods adopt a discriminative paradigm, where prediction is made based on matching scores between mention context and candidate entities.
We propose CoherentED, an ED system equipped with novel designs aimed at enhancing the coherence of entity predictions.
We achieve new state-of-the-art results on popular ED benchmarks, with an average improvement of 1.3 F1 points.
arXiv Detail & Related papers (2023-11-06T16:40:13Z) - A Model-Agnostic Framework for Recommendation via Interest-aware Item
Embeddings [4.989653738257287]
Interest-aware Capsule network (IaCN) is a model-agnostic framework that directly learns interest-oriented item representations.
IaCN serves as an auxiliary task, enabling the joint learning of both item-based and interest-based representations.
We evaluate the proposed approach on benchmark datasets, exploring various scenarios involving different deep neural networks.
arXiv Detail & Related papers (2023-08-17T22:40:59Z) - IA-GCN: Interactive Graph Convolutional Network for Recommendation [13.207235494649343]
Graph Convolutional Network (GCN) has become a novel state-of-the-art for Collaborative Filtering (CF) based Recommender Systems (RS)
We build bilateral interactive guidance between each user-item pair and propose a new model named IA-GCN (short for InterActive GCN)
Our model is built on top of LightGCN, a state-of-the-art GCN model for CF, and can be combined with various GCN-based CF architectures in an end-to-end fashion.
arXiv Detail & Related papers (2022-04-08T03:38:09Z) - Knowledge-Enhanced Hierarchical Graph Transformer Network for
Multi-Behavior Recommendation [56.12499090935242]
This work proposes a Knowledge-Enhanced Hierarchical Graph Transformer Network (KHGT) to investigate multi-typed interactive patterns between users and items in recommender systems.
KHGT is built upon a graph-structured neural architecture to capture type-specific behavior characteristics.
We show that KHGT consistently outperforms many state-of-the-art recommendation methods across various evaluation settings.
arXiv Detail & Related papers (2021-10-08T09:44:00Z) - Learning Dual Dynamic Representations on Time-Sliced User-Item
Interaction Graphs for Sequential Recommendation [62.30552176649873]
We devise a novel Dynamic Representation Learning model for Sequential Recommendation (DRL-SRe)
To better model the user-item interactions for characterizing the dynamics from both sides, the proposed model builds a global user-item interaction graph for each time slice.
To enable the model to capture fine-grained temporal information, we propose an auxiliary temporal prediction task over consecutive time slices.
arXiv Detail & Related papers (2021-09-24T07:44:27Z) - Position-enhanced and Time-aware Graph Convolutional Network for
Sequential Recommendations [3.286961611175469]
We propose a new deep learning-based sequential recommendation approach based on a Position-enhanced and Time-aware Graph Convolutional Network (PTGCN)
PTGCN models the sequential patterns and temporal dynamics between user-item interactions by defining a position-enhanced and time-aware graph convolution operation.
It realizes the high-order connectivity between users and items by stacking multi-layer graph convolutions.
arXiv Detail & Related papers (2021-07-12T07:34:20Z) - Sparse-Interest Network for Sequential Recommendation [78.83064567614656]
We propose a novel textbfSparse textbfInterest textbfNEtwork (SINE) for sequential recommendation.
Our sparse-interest module can adaptively infer a sparse set of concepts for each user from the large concept pool.
SINE can achieve substantial improvement over state-of-the-art methods.
arXiv Detail & Related papers (2021-02-18T11:03:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.