論文の概要: Credit Risk Meets Large Language Models: Building a Risk Indicator from
Loan Descriptions in P2P Lending
- arxiv url: http://arxiv.org/abs/2401.16458v1
- Date: Mon, 29 Jan 2024 10:11:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-31 17:26:42.573769
- Title: Credit Risk Meets Large Language Models: Building a Risk Indicator from
Loan Descriptions in P2P Lending
- Title(参考訳): 信用リスクと大規模言語モデル:P2Pのローン説明からリスク指標を構築する
- Authors: Mario Sanz-Guerrero, Javier Arroyo
- Abstract要約: ピアツーピア(P2P)融資は、借り手と貸し手とをオンラインプラットフォームを通じて結びつける独特の融資メカニズムとして登場した。
しかしながら、P2P貸与は情報非対称性の課題に直面している。
本稿では,ローン申請プロセスにおいて,借主が提供したテキスト記述を活用することで,この問題に対処する新たなアプローチを提案する。
- 参考スコア(独自算出の注目度): 1.4141453107129398
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Peer-to-peer (P2P) lending has emerged as a distinctive financing mechanism,
linking borrowers with lenders through online platforms. However, P2P lending
faces the challenge of information asymmetry, as lenders often lack sufficient
data to assess the creditworthiness of borrowers. This paper proposes a novel
approach to address this issue by leveraging the textual descriptions provided
by borrowers during the loan application process. Our methodology involves
processing these textual descriptions using a Large Language Model (LLM), a
powerful tool capable of discerning patterns and semantics within the text.
Transfer learning is applied to adapt the LLM to the specific task at hand.
Our results derived from the analysis of the Lending Club dataset show that
the risk score generated by BERT, a widely used LLM, significantly improves the
performance of credit risk classifiers. However, the inherent opacity of
LLM-based systems, coupled with uncertainties about potential biases,
underscores critical considerations for regulatory frameworks and engenders
trust-related concerns among end-users, opening new avenues for future research
in the dynamic landscape of P2P lending and artificial intelligence.
- Abstract(参考訳): ピアツーピア(P2P)融資は、借り手と貸し手とをオンラインプラットフォームを通じて結びつける独特の融資メカニズムとして登場した。
しかし、貸し手は借主の信用度を評価するのに十分なデータを持たないことが多いため、p2p融資は情報非対称性の課題に直面している。
本稿では,借主がローン申込プロセス中に提供したテキスト記述を活用して,この問題に対処するための新しい手法を提案する。
本手法では,テキスト内のパターンや意味を識別する強力なツールであるLarge Language Model (LLM) を用いて,これらのテキスト記述を処理する。
転送学習は、手前の特定のタスクにLLMを適用するために適用される。
筆者らは,Lending Clubデータセットの分析から,広く使用されているLCMであるBERTが生み出すリスクスコアが,信用リスク分類器の性能を著しく向上させることを示した。
しかし、llmベースのシステムの本質的な不透明性は潜在的なバイアスに関する不確実性と相まって、規制フレームワークの批判的考察を強調し、エンドユーザ間の信頼関係の懸念を喚起し、p2pレンディングと人工知能のダイナミックなランドスケープにおける今後の研究への新たな道を開く。
関連論文リスト
- VinePPO: Unlocking RL Potential For LLM Reasoning Through Refined Credit Assignment [66.80143024475635]
VinePPOは不偏のモンテカルロ推定を計算するための簡単な手法である。
我々は、VinePPOが、MATHおよびGSM8Kデータセット間でPPOや他のRLフリーベースラインを一貫して上回ることを示す。
論文 参考訳(メタデータ) (2024-10-02T15:49:30Z) - Exploring Automatic Cryptographic API Misuse Detection in the Era of LLMs [60.32717556756674]
本稿では,暗号誤用の検出において,大規模言語モデルを評価するための体系的評価フレームワークを提案する。
11,940個のLCM生成レポートを詳細に分析したところ、LSMに固有の不安定性は、報告の半数以上が偽陽性になる可能性があることがわかった。
最適化されたアプローチは、従来の手法を超え、確立されたベンチマークでこれまで知られていなかった誤用を明らかにすることで、90%近い顕著な検出率を達成する。
論文 参考訳(メタデータ) (2024-07-23T15:31:26Z) - Benchmarking Trustworthiness of Multimodal Large Language Models: A Comprehensive Study [51.19622266249408]
MultiTrustはMLLMの信頼性に関する最初の総合的で統一されたベンチマークである。
我々のベンチマークでは、マルチモーダルリスクとクロスモーダルインパクトの両方に対処する厳格な評価戦略を採用している。
21の近代MLLMによる大規模な実験は、これまで調査されなかった信頼性の問題とリスクを明らかにしている。
論文 参考訳(メタデータ) (2024-06-11T08:38:13Z) - CLAMBER: A Benchmark of Identifying and Clarifying Ambiguous Information Needs in Large Language Models [60.59638232596912]
大規模言語モデル(LLM)を評価するベンチマークであるCLAMBERを紹介する。
分類を基盤として12Kの高品質なデータを構築し, 市販のLCMの強度, 弱点, 潜在的なリスクを評価する。
本研究は, あいまいなユーザクエリの特定と明確化において, 現在のLCMの実用性に限界があることを示唆する。
論文 参考訳(メタデータ) (2024-05-20T14:34:01Z) - Empowering Many, Biasing a Few: Generalist Credit Scoring through Large
Language Models [53.620827459684094]
大規模言語モデル(LLM)は、複数のタスクにまたがる強力な一般化能力を持つ信用スコアリングタスクにおいて大きな可能性を秘めている。
クレジットスコアリングのための LLM を探索する,初のオープンソース包括的フレームワークを提案する。
そこで我々は,各種金融リスク評価タスクの煩雑な要求に合わせて,指導チューニングによる最初の信用・リスク評価大言語モデル(CALM)を提案する。
論文 参考訳(メタデータ) (2023-10-01T03:50:34Z) - Explaining Credit Risk Scoring through Feature Contribution Alignment
with Expert Risk Analysts [1.7778609937758323]
私たちは企業の信用スコアにフォーカスし、さまざまな機械学習モデルをベンチマークします。
目標は、企業が一定の期間内に金融問題を経験しているかどうかを予測するモデルを構築することです。
我々は、信用リスクの専門家とモデル機能属性説明との相違を強調した専門家による機能関連スコアを提供することで、光を当てる。
論文 参考訳(メタデータ) (2021-03-15T12:59:15Z) - Explainable AI in Credit Risk Management [0.0]
機械学習(ML)に基づく信用スコアリングモデルに対して,局所解釈モデル予測説明(LIME)とSHapley Additive exPlanations(SHAP)という2つの高度な説明可能性手法を実装した。
具体的には、LIMEを使用してインスタンスをローカルとSHAPで説明し、ローカルとグローバルの両方で説明します。
SHAP値を用いて生成されたグラフを説明するために利用可能なさまざまなカーネルを使用して、結果を詳細に議論し、複数の比較シナリオを提示する。
論文 参考訳(メタデータ) (2021-03-01T12:23:20Z) - Explanations of Machine Learning predictions: a mandatory step for its
application to Operational Processes [61.20223338508952]
信用リスクモデリングは重要な役割を果たす。
近年,機械学習や深層学習の手法が採用されている。
この分野における説明可能性問題に LIME 手法を適用することを提案する。
論文 参考訳(メタデータ) (2020-12-30T10:27:59Z) - Improving Investment Suggestions for Peer-to-Peer (P2P) Lending via
Integrating Credit Scoring into Profit Scoring [6.245537312562826]
本稿では、クレジット情報を収益評価モデルに組み込む2段階フレームワークを提案する。
実世界のP2P貸出データについて,米国P2P市場の実証実験を行った。
論文 参考訳(メタデータ) (2020-09-09T19:41:23Z) - The value of text for small business default prediction: A deep learning
approach [9.023847175654602]
限られたデータの可用性を損なうために、融資担当者がテキストによるローン評価を提供することは、標準的な方針である。
我々は、ディープラーニングと自然言語処理の分野からの最近の進歩を活用して、貸し手が提供する60万件のテキストアセスメントから情報を抽出する。
テキストだけでは、デフォルトを予測するのに驚くほど効果的であることがわかったが、従来のデータと組み合わせると、追加の予測能力は得られない。
しかし,本提案したディープラーニングモデルは,テキストの品質に頑健であり,mSME貸出プロセスの自動化に適していると考えられる。
論文 参考訳(メタデータ) (2020-03-19T18:15:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。