AFSD-Physics: Exploring the governing equations of temperature evolution
during additive friction stir deposition by a human-AI teaming approach
- URL: http://arxiv.org/abs/2401.16501v1
- Date: Mon, 29 Jan 2024 19:17:42 GMT
- Title: AFSD-Physics: Exploring the governing equations of temperature evolution
during additive friction stir deposition by a human-AI teaming approach
- Authors: Tony Shi, Mason Ma, Jiajie Wu, Chase Post, Elijah Charles, Tony
Schmitz
- Abstract summary: AFSD is an emerging solid-state additive manufacturing technology that deposits materials without melting.
A human-AI teaming approach is proposed to combine models based on first principles with AI.
The resulting human-informed machine learning method, denoted as AFSD-Physics, can effectively learn the governing equations of temperature evolution at the tool.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a modeling effort to explore the underlying physics of
temperature evolution during additive friction stir deposition (AFSD) by a
human-AI teaming approach. AFSD is an emerging solid-state additive
manufacturing technology that deposits materials without melting. However, both
process modeling and modeling of the AFSD tool are at an early stage. In this
paper, a human-AI teaming approach is proposed to combine models based on first
principles with AI. The resulting human-informed machine learning method,
denoted as AFSD-Physics, can effectively learn the governing equations of
temperature evolution at the tool and the build from in-process measurements.
Experiments are designed and conducted to collect in-process measurements for
the deposition of aluminum 7075 with a total of 30 layers. The acquired
governing equations are physically interpretable models with low computational
cost and high accuracy. Model predictions show good agreement with the
measurements. Experimental validation with new process parameters demonstrates
the model's generalizability and potential for use in tool temperature control
and process optimization.
Related papers
- On conditional diffusion models for PDE simulations [53.01911265639582]
We study score-based diffusion models for forecasting and assimilation of sparse observations.
We propose an autoregressive sampling approach that significantly improves performance in forecasting.
We also propose a new training strategy for conditional score-based models that achieves stable performance over a range of history lengths.
arXiv Detail & Related papers (2024-10-21T18:31:04Z) - Biomimetic Machine Learning approach for prediction of mechanical properties of Additive Friction Stir Deposited Aluminum alloys based walled structures [0.0]
This study presents a novel approach to predicting mechanical properties of Additive Friction Stir Deposited (AFSD) aluminum alloy walled structures using biomimetic machine learning.
The research combines numerical modeling of the AFSD process with genetic algorithm-optimized machine learning models to predict von Mises stress and logarithmic strain.
arXiv Detail & Related papers (2024-08-05T13:27:54Z) - Generalizing Weather Forecast to Fine-grained Temporal Scales via Physics-AI Hybrid Modeling [55.13352174687475]
This paper proposes a physics-AI hybrid model (i.e., WeatherGFT) which Generalizes weather forecasts to Finer-grained Temporal scales.
Specifically, we employ a carefully designed PDE kernel to simulate physical evolution on a small time scale.
We introduce a lead time-aware training framework to promote the generalization of the model at different lead times.
arXiv Detail & Related papers (2024-05-22T16:21:02Z) - Supervised Machine Learning and Physics based Machine Learning approach
for prediction of peak temperature distribution in Additive Friction Stir
Deposition of Aluminium Alloy [0.0]
correlations between process parameters, thermal profiles, and resulting in AFSD remain poorly understood.
This work employs a framework combining supervised machine learning ( neural) and physics-informed networks (PINNs) to predict peak temperature distribution in AFSD from process parameters.
arXiv Detail & Related papers (2023-09-13T09:39:42Z) - Capturing Local Temperature Evolution during Additive Manufacturing
through Fourier Neural Operators [0.0]
This paper presents a data-driven model that captures the local temperature evolution during the additive manufacturing process.
It is tested on numerical simulations based on the Discontinuous Galerkin Finite Element Method for the Direct Energy Deposition process.
The results demonstrate that the model achieves high fidelity as measured by $R2$ and maintains generalizability to geometries that were not included in the training process.
arXiv Detail & Related papers (2023-07-04T16:17:59Z) - Physics-constrained deep learning postprocessing of temperature and
humidity [0.0]
We propose to achieve physical consistency in deep learning-based postprocessing models.
We find that constraining a neural network to enforce thermodynamic state equations yields physically-consistent predictions.
arXiv Detail & Related papers (2022-12-07T09:31:25Z) - Advancing Reacting Flow Simulations with Data-Driven Models [50.9598607067535]
Key to effective use of machine learning tools in multi-physics problems is to couple them to physical and computer models.
The present chapter reviews some of the open opportunities for the application of data-driven reduced-order modeling of combustion systems.
arXiv Detail & Related papers (2022-09-05T16:48:34Z) - Hybrid full-field thermal characterization of additive manufacturing
processes using physics-informed neural networks with data [5.653328302363391]
We develop a hybrid physics-based data-driven thermal modeling approach of AM processes using physics-informed neural networks.
Partially observed temperature data measured from an infrared camera is combined with the physics laws to predict full-field temperature history.
Results show that the hybrid thermal model can effectively identify unknown parameters and capture the full-field temperature accurately.
arXiv Detail & Related papers (2022-06-15T18:27:10Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
We focus on the integration of incomplete physics models into deep generative models.
We propose a VAE architecture in which a part of the latent space is grounded by physics.
We demonstrate generative performance improvements over a set of synthetic and real-world datasets.
arXiv Detail & Related papers (2021-02-25T20:28:52Z) - Predictive modeling approaches in laser-based material processing [59.04160452043105]
This study aims to automate and forecast the effect of laser processing on material structures.
The focus is centred on the performance of representative statistical and machine learning algorithms.
Results can set the basis for a systematic methodology towards reducing material design, testing and production cost.
arXiv Detail & Related papers (2020-06-13T17:28:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.