論文の概要: R3HF: Reward Redistribution for Enhancing Reinforcement Learning from Human Feedback
- arxiv url: http://arxiv.org/abs/2411.08302v1
- Date: Wed, 13 Nov 2024 02:45:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-14 16:11:52.879217
- Title: R3HF: Reward Redistribution for Enhancing Reinforcement Learning from Human Feedback
- Title(参考訳): R3HF:人からのフィードバックから強化学習を促進するためのリワード再分配
- Authors: Jiahui Li, Tai-wei Chang, Fengda Zhang, Kun Kuang, Long Chen,
- Abstract要約: 人間のフィードバックからの強化学習(RLHF)は、大きな言語モデル(LLM)を人間の好みに合わせるためのパラダイムを提供する。
本稿では,より微細なトークンレベルの報酬配分を容易にするR3HFという新たな報酬分配手法を提案する。
- 参考スコア(独自算出の注目度): 25.27230140274847
- License:
- Abstract: Reinforcement learning from human feedback (RLHF) provides a paradigm for aligning large language models (LLMs) with human preferences. This involves the initial training of a reward model based on pairwise human feedback. The reward model is subsequently utilized in reinforcement learning to assess the scores of each generated sentence as a whole, further guiding the optimization of LLMs. However, current approaches have a significant shortcoming: \emph{They allocate a single, sparse, and delayed reward to an entire sequence of output}. This may overlook some significant individual contributions of each token towards the desired outcome. To overcome this limitation, our paper proposes a novel reward redistribution method called R3HF, which facilitates a more fine-grained, token-level reward allocation. Specifically, our method treats the reward prediction task of the reward model as a regression problem. As a result, the redistributed rewards are computed by evaluating the specific contribution of each token to the reward model's output. This detailed approach improves the model's understanding of language nuances, leading to more precise enhancements in its performance. Our method is crafted to integrate seamlessly with most current techniques while incurring minimal computational costs. Through comprehensive experiments across diverse datasets and tasks, we have verified the effectiveness and superiority of our approach.
- Abstract(参考訳): 人間のフィードバックからの強化学習(RLHF)は、大きな言語モデル(LLM)を人間の好みに合わせるためのパラダイムを提供する。
これには、ペアワイズな人間のフィードバックに基づいた報酬モデルの初期トレーニングが含まれる。
その後、報酬モデルを強化学習に利用して、生成された各文のスコアを全体として評価し、LLMの最適化をさらに導く。
しかし、現在のアプローチには重大な欠点がある。 \emph{Theyは、出力のシーケンス全体に対して単一の、スパース、遅延報酬を割り当てる。
これは、望ましい結果に向けて各トークンのいくつかの重要な個々の貢献を見落としてしまう可能性がある。
この制限を克服するために、よりきめ細かいトークンレベルの報酬配分を容易にするR3HFと呼ばれる新しい報酬再分配手法を提案する。
具体的には,報酬モデルの報酬予測タスクを回帰問題として扱う。
その結果、各トークンの報酬モデル出力に対する特定の貢献を評価することにより、再分配された報酬を算出する。
この詳細なアプローチにより、モデルの言語ニュアンスに対する理解が向上し、パフォーマンスがより正確に向上する。
本手法は,計算コストの最小化を図りながら,現在のほとんどの技術とシームレスに統合する。
多様なデータセットやタスクにわたる包括的な実験を通じて、我々のアプローチの有効性と優位性を検証した。
関連論文リスト
- Approximated Variational Bayesian Inverse Reinforcement Learning for Large Language Model Alignment [0.618727087412292]
大規模言語モデル(LLM)のアライメントは、有用で無害なコンテンツを生成するために不可欠である。
既存のアプローチでは、好みに基づく人間のフィードバックデータを利用して報酬関数を学習する。
近似変分アライメント学習(AVRIL)によるLLMアライメントを実現するための新しいトレーニング目標である近似変分アライメント(AVA)を提案する。
論文 参考訳(メタデータ) (2024-11-14T10:37:34Z) - Optimal Design for Reward Modeling in RLHF [83.3614658277817]
我々は,人間からの強化学習における報酬訓練モデルを定式化する。
有効なデータセットの選択は、単純な後悔の最小化タスクとしてフレーム化します。
適切な前提の下では、単純な後悔に縛られる。
論文 参考訳(メタデータ) (2024-10-22T14:36:44Z) - RewardBench: Evaluating Reward Models for Language Modeling [100.28366840977966]
本稿では,報酬モデル評価のためのベンチマークデータセットとコードベースであるRewardBenchを紹介する。
データセットは、チャット、推論、安全性にまたがる、プロンプト・チョーゼン・リジェクトされたトリオのコレクションである。
RewardBenchのリーダーボードでは、様々な方法で訓練された報酬モデルを評価する。
論文 参考訳(メタデータ) (2024-03-20T17:49:54Z) - Dense Reward for Free in Reinforcement Learning from Human Feedback [64.92448888346125]
我々は報酬モデルが単にスカラー出力よりも多くの情報を含んでいるという事実を活用している。
私たちは、これらの注意重みを使って、完了全体に沿って報酬を再分配します。
経験的に、トレーニングを安定化し、学習速度を加速し、実際は、より良い局所最適性をもたらす可能性があることを示す。
論文 参考訳(メタデータ) (2024-02-01T17:10:35Z) - Improving Reinforcement Learning from Human Feedback with Efficient Reward Model Ensemble [67.4269821365504]
人間のフィードバックからの強化学習(Reinforcement Learning from Human Feedback, RLHF)は、大きな言語モデルと人間の価値を整合させる手法として広く採用されている。
しかし、RLHFは限られた量の人間の嗜好データで訓練された報酬モデルに依存している。
報奨モデルによりより正確な予測が可能となる報奨アンサンブル法を提案する。
論文 参考訳(メタデータ) (2024-01-30T00:17:37Z) - Iterative Data Smoothing: Mitigating Reward Overfitting and
Overoptimization in RLHF [79.98542868281471]
強化学習(Reinforcement Learning from Human Feedback, RLHF)は、言語モデルを人間中心の値と密接に整合させる手法である。
学習した報奨モデルに対して過度に最適化すると、最終的には真の目的が損なわれることが観察された。
本稿では、これらの問題を考察し、「Iterative Data Smoothing」(IDS)と呼ばれる改良された報酬学習アルゴリズムの設計に理論的知見を活用する。
論文 参考訳(メタデータ) (2024-01-29T17:43:42Z) - Data Driven Reward Initialization for Preference based Reinforcement
Learning [20.13307800821161]
選好に基づく強化学習(PbRL)法は、ループ内の人間からの2進フィードバック(HiL)をクエリされた軌道対上で利用し、報酬モデルを学ぶ。
実験のランダムな種に敏感な報酬モデルにおける高い変動性の問題について検討する。
論文 参考訳(メタデータ) (2023-02-17T07:07:07Z) - Reward Uncertainty for Exploration in Preference-based Reinforcement
Learning [88.34958680436552]
好みに基づく強化学習アルゴリズムを対象とした探索手法を提案する。
我々の基本的な考え方は、学習した報酬に基づいて、斬新さを測定することによって、本質的な報酬を設計することである。
実験により、学習報酬の不確実性からの探索ボーナスは、好みに基づくRLアルゴリズムのフィードバック効率とサンプル効率の両方を改善することが示された。
論文 参考訳(メタデータ) (2022-05-24T23:22:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。