論文の概要: TeenyTinyLlama: open-source tiny language models trained in Brazilian Portuguese
- arxiv url: http://arxiv.org/abs/2401.16640v2
- Date: Tue, 9 Apr 2024 14:35:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-10 19:47:12.921009
- Title: TeenyTinyLlama: open-source tiny language models trained in Brazilian Portuguese
- Title(参考訳): TeenyTinyLlama: ブラジルでトレーニングされたオープンソースの小さな言語モデル
- Authors: Nicholas Kluge Corrêa, Sophia Falk, Shiza Fatimah, Aniket Sen, Nythamar de Oliveira,
- Abstract要約: 大規模言語モデル(LLM)は、かなり進歩した自然言語処理を持つが、その進歩は言語間ではまだ等しくなっていない。
本研究では,低リソース環境での使用に適したオープン・ファウンデーション・モデルの開発について述べる。
これはTeenyTinyLlamaペアで、ブラジルのポルトガル語テキスト生成用の2つのコンパクトモデルです。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Large language models (LLMs) have significantly advanced natural language processing, but their progress has yet to be equal across languages. While most LLMs are trained in high-resource languages like English, multilingual models generally underperform monolingual ones. Additionally, aspects of their multilingual foundation sometimes restrict the byproducts they produce, like computational demands and licensing regimes. In this study, we document the development of open-foundation models tailored for use in low-resource settings, their limitations, and their benefits. This is the TeenyTinyLlama pair: two compact models for Brazilian Portuguese text generation. We release them under the permissive Apache 2.0 license on GitHub and Hugging Face for community use and further development. See https://github.com/Nkluge-correa/TeenyTinyLlama
- Abstract(参考訳): 大規模言語モデル(LLM)は、かなり進歩した自然言語処理を持つが、その進歩は言語間ではまだ等しくなっていない。
ほとんどのLLMは英語のような高リソース言語で訓練されているが、多言語モデルは一般的にモノリンガル言語よりも性能が低い。
さらに、多言語基盤の側面は、計算要求やライセンス制度のような副産物を制限することもある。
本研究では,低リソース環境での使用に適したオープン・ファウンデーション・モデルの開発,その限界,そのメリットについて述べる。
これはTeenyTinyLlamaペアで、ブラジルのポルトガル語テキスト生成用の2つのコンパクトモデルです。
私たちは、GitHub上の寛容なApache 2.0ライセンスと、コミュニティの使用とさらなる開発のためにHugging Faceでそれらをリリースしています。
https://github.com/Nkluge-correa/TeenyTinyLlamaを参照。
関連論文リスト
- Crosslingual Capabilities and Knowledge Barriers in Multilingual Large Language Models [62.91524967852552]
大規模言語モデル(LLM)は、多言語コーパスの事前訓練のため、一般的に多言語である。
しかし、これらのモデルは言語間で対応する概念を関連付けることができ、効果的にクロスランガルなのでしょうか?
本研究は,言語横断的課題に関する6つの技術 LLM の評価を行った。
論文 参考訳(メタデータ) (2024-06-23T15:15:17Z) - Towards a More Inclusive AI: Progress and Perspectives in Large Language Model Training for the Sámi Language [7.289015788793582]
本研究は、S'ami言語における技術参加の増大に焦点を当てている。
我々は,Ultra Low Resource (ULR)言語の言語モデリング問題に対して,MLコミュニティの注目を集めている。
Webから利用可能なS'ami言語リソースをコンパイルして、言語モデルをトレーニングするためのクリーンなデータセットを作成しました。
論文 参考訳(メタデータ) (2024-05-09T13:54:22Z) - CMULAB: An Open-Source Framework for Training and Deployment of Natural Language Processing Models [59.91221728187576]
本稿では,NLPモデルのモデル展開と連続的なヒューマン・イン・ザ・ループの微調整を簡単にするオープンソースフレームワークであるCMU言語バックエンドを紹介する。
CMULABは、マルチ言語モデルのパワーを活用して、音声認識、OCR、翻訳、構文解析などの既存のツールを新しい言語に迅速に適応し、拡張することができる。
論文 参考訳(メタデータ) (2024-04-03T02:21:46Z) - Poro 34B and the Blessing of Multilinguality [3.270981284471548]
Poro 34Bは、フィンランド語、英語、プログラミング言語の1兆トークンのために訓練された34億のパラメータモデルである。
フィンランド語における既存モデルの能力を大幅に向上するモデルを,多言語学習アプローチにより生成できることが示される。
論文 参考訳(メタデータ) (2024-04-02T11:34:12Z) - YAYI 2: Multilingual Open-Source Large Language Models [53.92832054643197]
我々は,300億のパラメータを持つベースモデルとチャットモデルを含むYAYI 2を提案する。
YAYI 2は、トレーニング済みのデータ処理パイプラインによってフィルタされた2.65兆のトークンを含む多言語コーパス上で、スクラッチから事前トレーニングされる。
ベースモデルは、数百万の指示による教師付き微調整と、人間のフィードバックからの強化学習によって、人間の価値と整合する。
論文 参考訳(メタデータ) (2023-12-22T17:34:47Z) - Baichuan 2: Open Large-scale Language Models [51.56361715162972]
我々は、70億と13億のパラメータを含む大規模な多言語言語モデルであるBaichuan 2を、2.6兆のトークン上でスクラッチからトレーニングする。
Baichuan 2は、MMLU、CMMLU、GSM8K、HumanEvalなどの公開ベンチマークで、同様のサイズの他のオープンソースモデルにマッチするか、より優れています。
論文 参考訳(メタデータ) (2023-09-19T04:13:22Z) - PolyLM: An Open Source Polyglot Large Language Model [57.64420154135178]
我々は6400億(B)トークンでトレーニングされた多言語大言語モデル(LLM)であるPolyLMについて述べる。
その多言語的能力を高めるために,1) バイリンガルデータをトレーニングデータに統合し,2) 事前学習中に英語以外のデータの比率を30%から60%に引き上げるカリキュラム学習戦略を採用する。
さらに,モデル微調整のために,132.7Kの多言語命令を自動的に生成する多言語自己指示手法を提案する。
論文 参考訳(メタデータ) (2023-07-12T09:00:37Z) - Generalizing Multimodal Pre-training into Multilingual via Language
Acquisition [54.69707237195554]
英語のVision-Language Pre-Trainingは、様々な下流タスクで大きな成功を収めた。
この成功を英語以外の言語に一般化するために、Multilingual Vision-Language Pre-Trainingを通じていくつかの取り組みがなされている。
単言語視覚言語事前学習モデルを多言語に容易に一般化できるtextbfMultitextbfLingual textbfAcquisition (MLA) フレームワークを提案する。
論文 参考訳(メタデータ) (2022-05-29T08:53:22Z) - English2Gbe: A multilingual machine translation model for {Fon/Ewe}Gbe [0.0]
本稿では,英語からEwe or Fonへの翻訳が可能な多言語ニューラルマシン翻訳モデルである English2Gbe を紹介する。
英語2Gbeはバイリンガルモデル(Ewe と English Fon )より優れており、Fon の JW300 ベンチマークでは最先端の結果が得られている。
論文 参考訳(メタデータ) (2021-12-13T10:35:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。