A Personalized Framework for Consumer and Producer Group Fairness
Optimization in Recommender Systems
- URL: http://arxiv.org/abs/2402.00485v1
- Date: Thu, 1 Feb 2024 10:42:05 GMT
- Title: A Personalized Framework for Consumer and Producer Group Fairness
Optimization in Recommender Systems
- Authors: Hossein A. Rahmani, Mohammadmehdi Naghiaei, Yashar Deldjoo
- Abstract summary: We propose CP-FairRank, an optimization-based re-ranking algorithm that seamlessly integrates fairness constraints from both the consumer and producer side.
We demonstrate that our proposed strategy is able to improve both consumer and producer fairness without compromising overall recommendation quality.
- Score: 13.89038866451741
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, there has been an increasing recognition that when machine
learning (ML) algorithms are used to automate decisions, they may mistreat
individuals or groups, with legal, ethical, or economic implications.
Recommender systems are prominent examples of these machine learning (ML)
systems that aid users in making decisions. The majority of past literature
research on RS fairness treats user and item fairness concerns independently,
ignoring the fact that recommender systems function in a two-sided marketplace.
In this paper, we propose CP-FairRank, an optimization-based re-ranking
algorithm that seamlessly integrates fairness constraints from both the
consumer and producer side in a joint objective framework. The framework is
generalizable and may take into account varied fairness settings based on group
segmentation, recommendation model selection, and domain, which is one of its
key characteristics. For instance, we demonstrate that the system may jointly
increase consumer and producer fairness when (un)protected consumer groups are
defined on the basis of their activity level and main-streamness, while
producer groups are defined according to their popularity level. For empirical
validation, through large-scale on eight datasets and four mainstream
collaborative filtering (CF) recommendation models, we demonstrate that our
proposed strategy is able to improve both consumer and producer fairness
without compromising or very little overall recommendation quality,
demonstrating the role algorithms may play in avoiding data biases.
Related papers
- FairDgcl: Fairness-aware Recommendation with Dynamic Graph Contrastive Learning [48.38344934125999]
We study how to implement high-quality data augmentation to improve recommendation fairness.
Specifically, we propose FairDgcl, a dynamic graph adversarial contrastive learning framework.
We show that FairDgcl can simultaneously generate enhanced representations that possess both fairness and accuracy.
arXiv Detail & Related papers (2024-10-23T04:43:03Z) - Learning Fair Ranking Policies via Differentiable Optimization of
Ordered Weighted Averages [55.04219793298687]
This paper shows how efficiently-solvable fair ranking models can be integrated into the training loop of Learning to Rank.
In particular, this paper is the first to show how to backpropagate through constrained optimizations of OWA objectives, enabling their use in integrated prediction and decision models.
arXiv Detail & Related papers (2024-02-07T20:53:53Z) - Fed-CBS: A Heterogeneity-Aware Client Sampling Mechanism for Federated
Learning via Class-Imbalance Reduction [76.26710990597498]
We show that the class-imbalance of the grouped data from randomly selected clients can lead to significant performance degradation.
Based on our key observation, we design an efficient client sampling mechanism, i.e., Federated Class-balanced Sampling (Fed-CBS)
In particular, we propose a measure of class-imbalance and then employ homomorphic encryption to derive this measure in a privacy-preserving way.
arXiv Detail & Related papers (2022-09-30T05:42:56Z) - Application of Machine Learning for Online Reputation Systems [0.4125187280299248]
This paper proposes a new reputation system using machine learning to predict reliability of consumers from consumer profile.
The proposed model has been evaluated over three MovieLens benchmarking datasets, using 10-Folds cross validation.
arXiv Detail & Related papers (2022-09-10T12:31:40Z) - Recommendation Systems with Distribution-Free Reliability Guarantees [83.80644194980042]
We show how to return a set of items rigorously guaranteed to contain mostly good items.
Our procedure endows any ranking model with rigorous finite-sample control of the false discovery rate.
We evaluate our methods on the Yahoo! Learning to Rank and MSMarco datasets.
arXiv Detail & Related papers (2022-07-04T17:49:25Z) - Experiments on Generalizability of User-Oriented Fairness in Recommender
Systems [2.0932879442844476]
A fairness-aware recommender system aims to treat different user groups similarly.
We propose a user-centered fairness re-ranking framework applied on top of a base ranking model.
We evaluate the final recommendations provided by the re-ranking framework from both user- (e.g., NDCG) and item-side (e.g., novelty, item-fairness) metrics.
arXiv Detail & Related papers (2022-05-17T12:36:30Z) - Joint Multisided Exposure Fairness for Recommendation [76.75990595228666]
This paper formalizes a family of exposure fairness metrics that model the problem jointly from the perspective of both the consumers and producers.
Specifically, we consider group attributes for both types of stakeholders to identify and mitigate fairness concerns that go beyond individual users and items towards more systemic biases in recommendation.
arXiv Detail & Related papers (2022-04-29T19:13:23Z) - CPFair: Personalized Consumer and Producer Fairness Re-ranking for
Recommender Systems [5.145741425164946]
We present an optimization-based re-ranking approach that seamlessly integrates fairness constraints from both the consumer and producer-side.
We demonstrate through large-scale experiments on 8 datasets that our proposed method is capable of improving both consumer and producer fairness without reducing overall recommendation quality.
arXiv Detail & Related papers (2022-04-17T20:38:02Z) - The Unfairness of Active Users and Popularity Bias in Point-of-Interest
Recommendation [4.578469978594752]
This paper studies the interplay between (i) the unfairness of active users, (ii) the unfairness of popular items, and (iii) the accuracy of recommendation as three angles of our study triangle.
For item fairness, we divide items into short-head, mid-tail, and long-tail groups and study the exposure of these item groups into the top-k recommendation list of users.
Our study shows that most recommendation models cannot satisfy both consumer and producer fairness, indicating a trade-off between these variables possibly due to natural biases in data.
arXiv Detail & Related papers (2022-02-27T08:02:19Z) - User-oriented Fairness in Recommendation [21.651482297198687]
We address the unfairness problem in recommender systems from the user perspective.
We group users into advantaged and disadvantaged groups according to their level of activity.
Our approach can not only improve group fairness of users in recommender systems, but also achieve better overall recommendation performance.
arXiv Detail & Related papers (2021-04-21T17:50:31Z) - Overcoming Data Sparsity in Group Recommendation [52.00998276970403]
Group recommender systems should be able to accurately learn not only users' personal preferences but also preference aggregation strategy.
In this paper, we take Bipartite Graphding Model (BGEM), the self-attention mechanism and Graph Convolutional Networks (GCNs) as basic building blocks to learn group and user representations in a unified way.
arXiv Detail & Related papers (2020-10-02T07:11:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.