CPFair: Personalized Consumer and Producer Fairness Re-ranking for
Recommender Systems
- URL: http://arxiv.org/abs/2204.08085v1
- Date: Sun, 17 Apr 2022 20:38:02 GMT
- Title: CPFair: Personalized Consumer and Producer Fairness Re-ranking for
Recommender Systems
- Authors: Mohammadmehdi Naghiaei, Hossein A. Rahmani, Yashar Deldjoo
- Abstract summary: We present an optimization-based re-ranking approach that seamlessly integrates fairness constraints from both the consumer and producer-side.
We demonstrate through large-scale experiments on 8 datasets that our proposed method is capable of improving both consumer and producer fairness without reducing overall recommendation quality.
- Score: 5.145741425164946
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, there has been a rising awareness that when machine learning (ML)
algorithms are used to automate choices, they may treat/affect individuals
unfairly, with legal, ethical, or economic consequences. Recommender systems
are prominent examples of such ML systems that assist users in making
high-stakes judgments. A common trend in the previous literature research on
fairness in recommender systems is that the majority of works treat user and
item fairness concerns separately, ignoring the fact that recommender systems
operate in a two-sided marketplace. In this work, we present an
optimization-based re-ranking approach that seamlessly integrates fairness
constraints from both the consumer and producer-side in a joint objective
framework. We demonstrate through large-scale experiments on 8 datasets that
our proposed method is capable of improving both consumer and producer fairness
without reducing overall recommendation quality, demonstrating the role
algorithms may play in minimizing data biases.
Related papers
- Learning Recommender Systems with Soft Target: A Decoupled Perspective [49.83787742587449]
We propose a novel decoupled soft label optimization framework to consider the objectives as two aspects by leveraging soft labels.
We present a sensible soft-label generation algorithm that models a label propagation algorithm to explore users' latent interests in unobserved feedback via neighbors.
arXiv Detail & Related papers (2024-10-09T04:20:15Z) - Correcting for Popularity Bias in Recommender Systems via Item Loss Equalization [1.7771454131646311]
A small set of popular items dominate the recommendation results due to their high interaction rates.
This phenomenon disproportionately benefits users with mainstream tastes while neglecting those with niche interests.
We propose an in-processing approach to address this issue by intervening in the training process of recommendation models.
arXiv Detail & Related papers (2024-10-07T08:34:18Z) - A Personalized Framework for Consumer and Producer Group Fairness
Optimization in Recommender Systems [13.89038866451741]
We propose CP-FairRank, an optimization-based re-ranking algorithm that seamlessly integrates fairness constraints from both the consumer and producer side.
We demonstrate that our proposed strategy is able to improve both consumer and producer fairness without compromising overall recommendation quality.
arXiv Detail & Related papers (2024-02-01T10:42:05Z) - A Survey on Fairness-aware Recommender Systems [59.23208133653637]
We present concepts of fairness in different recommendation scenarios, comprehensively categorize current advances, and introduce typical methods to promote fairness in different stages of recommender systems.
Next, we delve into the significant influence that fairness-aware recommender systems exert on real-world industrial applications.
arXiv Detail & Related papers (2023-06-01T07:08:22Z) - Consumer-side Fairness in Recommender Systems: A Systematic Survey of
Methods and Evaluation [1.4123323039043334]
Growing awareness of discrimination in machine learning methods motivated both academia and industry to research how fairness can be ensured in recommender systems.
For recommender systems, such issues are well exemplified by occupation recommendation, where biases in historical data may lead to recommender systems relating one gender to lower wages or to the propagation of stereotypes.
This survey serves as a systematic overview and discussion of the current research on consumer-side fairness in recommender systems.
arXiv Detail & Related papers (2023-05-16T10:07:41Z) - Improving Recommendation Fairness via Data Augmentation [66.4071365614835]
Collaborative filtering based recommendation learns users' preferences from all users' historical behavior data, and has been popular to facilitate decision making.
A recommender system is considered unfair when it does not perform equally well for different user groups according to users' sensitive attributes.
In this paper, we study how to improve recommendation fairness from the data augmentation perspective.
arXiv Detail & Related papers (2023-02-13T13:11:46Z) - Application of Machine Learning for Online Reputation Systems [0.4125187280299248]
This paper proposes a new reputation system using machine learning to predict reliability of consumers from consumer profile.
The proposed model has been evaluated over three MovieLens benchmarking datasets, using 10-Folds cross validation.
arXiv Detail & Related papers (2022-09-10T12:31:40Z) - PURS: Personalized Unexpected Recommender System for Improving User
Satisfaction [76.98616102965023]
We describe a novel Personalized Unexpected Recommender System (PURS) model that incorporates unexpectedness into the recommendation process.
Extensive offline experiments on three real-world datasets illustrate that the proposed PURS model significantly outperforms the state-of-the-art baseline approaches.
arXiv Detail & Related papers (2021-06-05T01:33:21Z) - User-oriented Fairness in Recommendation [21.651482297198687]
We address the unfairness problem in recommender systems from the user perspective.
We group users into advantaged and disadvantaged groups according to their level of activity.
Our approach can not only improve group fairness of users in recommender systems, but also achieve better overall recommendation performance.
arXiv Detail & Related papers (2021-04-21T17:50:31Z) - DeepFair: Deep Learning for Improving Fairness in Recommender Systems [63.732639864601914]
The lack of bias management in Recommender Systems leads to minority groups receiving unfair recommendations.
We propose a Deep Learning based Collaborative Filtering algorithm that provides recommendations with an optimum balance between fairness and accuracy without knowing demographic information about the users.
arXiv Detail & Related papers (2020-06-09T13:39:38Z) - Fairness-Aware Explainable Recommendation over Knowledge Graphs [73.81994676695346]
We analyze different groups of users according to their level of activity, and find that bias exists in recommendation performance between different groups.
We show that inactive users may be more susceptible to receiving unsatisfactory recommendations, due to insufficient training data for the inactive users.
We propose a fairness constrained approach via re-ranking to mitigate this problem in the context of explainable recommendation over knowledge graphs.
arXiv Detail & Related papers (2020-06-03T05:04:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.