論文の概要: VIS-MAE: An Efficient Self-supervised Learning Approach on Medical Image Segmentation and Classification
- arxiv url: http://arxiv.org/abs/2402.01034v2
- Date: Thu, 16 Jan 2025 16:45:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-17 15:07:30.411131
- Title: VIS-MAE: An Efficient Self-supervised Learning Approach on Medical Image Segmentation and Classification
- Title(参考訳): VIS-MAE: 医用画像分割・分類における効率的な自己教師型学習手法
- Authors: Zelong Liu, Andrew Tieu, Nikhil Patel, Georgios Soultanidis, Louisa Deyer, Ying Wang, Sean Huver, Alexander Zhou, Yunhao Mei, Zahi A. Fayad, Timothy Deyer, Xueyan Mei,
- Abstract要約: 医用画像に特化して設計された新しいモデルウェイトであるVisualization and Masked AutoEncoder(VIS-MAE)について述べる。
VIS-MAEは、様々なモダリティから250万枚の未ラベル画像のデータセットで訓練されている。
その後、明示的なラベルを使って分類とセグメンテーションのタスクに適応する。
- 参考スコア(独自算出の注目度): 33.699424327366856
- License:
- Abstract: Artificial Intelligence (AI) has the potential to revolutionize diagnosis and segmentation in medical imaging. However, development and clinical implementation face multiple challenges including limited data availability, lack of generalizability, and the necessity to incorporate multi-modal data effectively. A foundation model, which is a large-scale pre-trained AI model, offers a versatile base that can be adapted to a variety of specific tasks and contexts. Here, we present VIsualization and Segmentation Masked AutoEncoder (VIS-MAE), novel model weights specifically designed for medical imaging. Specifically, VIS-MAE is trained on a dataset of 2.5 million unlabeled images from various modalities (CT, MR, PET,X-rays, and ultrasound), using self-supervised learning techniques. It is then adapted to classification and segmentation tasks using explicit labels. VIS-MAE has high label efficiency, outperforming several benchmark models in both in-domain and out-of-domain applications. In addition, VIS-MAE has improved label efficiency as it can achieve similar performance to other models with a reduced amount of labeled training data (50% or 80%) compared to other pre-trained weights. VIS-MAE represents a significant advancement in medical imaging AI, offering a generalizable and robust solution for improving segmentation and classification tasks while reducing the data annotation workload. The source code of this work is available at https://github.com/lzl199704/VIS-MAE.
- Abstract(参考訳): 人工知能(AI)は、医療画像の診断とセグメンテーションに革命をもたらす可能性がある。
しかし、開発と臨床実装は、データ可用性の制限、一般化可能性の欠如、マルチモーダルデータを効果的に組み込む必要性など、複数の課題に直面している。
大規模な事前学習型AIモデルであるファンデーションモデルは、さまざまな特定のタスクやコンテキストに適応可能な汎用的なベースを提供する。
本稿では、医用画像に特化して設計された新しいモデルウェイトであるVisualization and Segmentation Masked AutoEncoder(VIS-MAE)を紹介する。
特に、VIS-MAEは、自己教師付き学習技術を用いて、CT、MR、PET、X線、超音波といった様々なモダリティから2.5万枚の未ラベル画像のデータセットで訓練されている。
その後、明示的なラベルを使って分類とセグメンテーションのタスクに適応する。
VIS-MAEは高いラベル効率を持ち、ドメイン内およびドメイン外の両方でいくつかのベンチマークモデルより優れている。
さらに、VIS-MAEはラベル付きトレーニングデータ(50%または80%)の少ない他のモデルと同等の性能を達成できるため、ラベル効率が向上した。
VIS-MAEは、データアノテーションのワークロードを削減しつつ、セグメンテーションと分類タスクを改善する汎用的で堅牢なソリューションを提供する。
この作業のソースコードはhttps://github.com/lzl 199704/VIS-MAEで公開されている。
関連論文リスト
- LoGra-Med: Long Context Multi-Graph Alignment for Medical Vision-Language Model [55.80651780294357]
最新の医療用マルチモーダル大規模言語モデル(med-MLLM)は、事前訓練において命令追従データを活用する。
LoGra-Medは新しいマルチグラフアライメントアルゴリズムで、画像のモダリティ、会話ベースの記述、拡張キャプション間でのトリプルト相関を強制する。
以上の結果から,LoGra-Medは医療用VQAの600K画像テキスト対に対してLAVA-Medと一致し,その10%でトレーニングした場合に有意に優れていた。
論文 参考訳(メタデータ) (2024-10-03T15:52:03Z) - PMT: Progressive Mean Teacher via Exploring Temporal Consistency for Semi-Supervised Medical Image Segmentation [51.509573838103854]
医用画像セグメンテーションのための半教師付き学習フレームワークであるプログレッシブ平均教師(PMT)を提案する。
我々のPMTは、トレーニングプロセスにおいて、堅牢で多様な特徴を学習することで、高忠実な擬似ラベルを生成する。
CT と MRI の異なる2つのデータセットに対する実験結果から,本手法が最先端の医用画像分割法より優れていることが示された。
論文 参考訳(メタデータ) (2024-09-08T15:02:25Z) - MOSMOS: Multi-organ segmentation facilitated by medical report supervision [10.396987980136602]
マルチオーガンスーパービジョン(MOS)のための新しい事前学習・微調整フレームワークを提案する。
具体的には、まず、トレーニング前の段階で、医用画像とレポートのペアを合わせるために、グローバルコントラスト学習を導入する。
さらに,画像画素と臓器タグ間の意味的対応を暗黙的に学習するために,マルチラベル認識を活用する。
論文 参考訳(メタデータ) (2024-09-04T03:46:17Z) - Med-MoE: Mixture of Domain-Specific Experts for Lightweight Medical Vision-Language Models [17.643421997037514]
差別的, 生成的両マルチモーダル医療課題に対処する新しい枠組みを提案する。
Med-MoEの学習は、マルチモーダル医療アライメント、命令チューニングとルーティング、ドメイン固有のMoEチューニングの3つのステップで構成されている。
我々のモデルは最先端のベースラインに匹敵する性能を達成できる。
論文 参考訳(メタデータ) (2024-04-16T02:35:17Z) - Self-Prompting Large Vision Models for Few-Shot Medical Image
Segmentation [14.135249795318591]
本稿では,医療ビジョン応用における自己プロンプトの新たな視点を提案する。
我々は、Segment Anything Modelの埋め込み空間を利用して、単純だが効果的な線形ピクセルワイド分類器を通して自身を誘導する。
複数のデータセットで競合する結果を得る。
論文 参考訳(メタデータ) (2023-08-15T08:20:07Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
LVM-Medは、大規模医療データセットに基づいてトレーニングされた、最初のディープネットワークファミリーである。
55の公開データセットから約13万の医療画像を収集しました。
LVM-Medは、多くの最先端の教師付き、自己監督型、基礎モデルよりも経験的に優れている。
論文 参考訳(メタデータ) (2023-06-20T22:21:34Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
本稿では,学習可能な重みに基づくハイブリッド医療画像セグメンテーション手法を提案する。
我々のアプローチはどんなハイブリッドモデルにも簡単に統合でき、外部のトレーニングデータを必要としない。
多臓器・肺がんセグメンテーションタスクの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-06-15T17:55:05Z) - Domain Generalization for Mammographic Image Analysis with Contrastive
Learning [62.25104935889111]
効果的なディープラーニングモデルのトレーニングには、さまざまなスタイルと品質を備えた大規模なデータが必要である。
より優れたスタイルの一般化能力を備えた深層学習モデルを実現するために,新しいコントラスト学習法が開発された。
提案手法は,様々なベンダスタイルドメインのマンモグラムや,いくつかのパブリックデータセットを用いて,広範囲かつ厳密に評価されている。
論文 参考訳(メタデータ) (2023-04-20T11:40:21Z) - Uncertainty-aware multi-view co-training for semi-supervised medical
image segmentation and domain adaptation [35.33425093398756]
ラベルのないデータは、注釈付きデータよりもはるかに簡単に取得できる。
医用画像セグメンテーションのための不確実性を考慮したマルチビュー協調トレーニングを提案する。
我々のフレームワークは、ラベルのないデータを効率的に活用してパフォーマンスを向上させることができる。
論文 参考訳(メタデータ) (2020-06-28T22:04:54Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
挑戦的なシナリオで堅牢なモデリングを可能にするディープラーニングフレームワークを提案する。
その結果,85%のラベル付きデータを用いて,大規模データ設定で学習した分類器の性能に適合する予測モデルを構築することができた。
論文 参考訳(メタデータ) (2020-05-03T02:36:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。