Directional emission and photon bunching from a qubit pair in waveguide
- URL: http://arxiv.org/abs/2402.01286v2
- Date: Wed, 21 Aug 2024 07:30:46 GMT
- Title: Directional emission and photon bunching from a qubit pair in waveguide
- Authors: M. Maffei, D. Pomarico, P. Facchi, G. Magnifico, S. Pascazio, F. Pepe,
- Abstract summary: We consider a pair of identical qubits coupled to a parity invariant waveguide in the microwave domain.
We show the common origin of directional single photon emission and two photon directional bunching.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Waveguide quantum electrodynamics represents a powerful platform to generate entanglement and tailor photonic states. We consider a pair of identical qubits coupled to a parity invariant waveguide in the microwave domain. By working in the one- and two-excitation sectors, we provide a unified view of decay processes and we show the common origin of directional single photon emission and two photon directional bunching. Unveiling the quantum trajectories, we demonstrate that both phenomena are rooted in the selective coupling of orthogonal qubits Bell states with different photon propagation directions. We comment on how to use this mechanism to implement optimized post-selection of Bell states, heralded by the detection of photons on one qubits side.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Efficient single-photon directional transfer between waveguides via two giant atoms [1.4778851751964937]
We investigate the single-photon transport properties in a double-waveguide quantum electrodynamic system.
Our results indicate that resonant photons can be completely transferred between the two waveguides.
This study has potential applications in quantum networks and integrated photonic circuits.
arXiv Detail & Related papers (2024-07-09T07:49:16Z) - Exact solution of a lambda quantum system driven by a two-photon
wavepacket [0.0]
We analytically find the non-perturbative dynamics of an atom driven by a two-photon wavepacket.
As an application, we study the dynamics of a quantum state purification.
arXiv Detail & Related papers (2023-12-08T20:24:24Z) - Many-photon scattering and entangling in a waveguide with a
{\Lambda}-type atom [55.2480439325792]
We show that after transmission of a short few-photon pulse, the final state of the atom and all the photons is a genuine multipartite entangled state belonging to the W class.
The parameters of the input pulse are optimized to maximize the efficiency of three- and four-partite W-state production.
arXiv Detail & Related papers (2023-09-25T09:06:28Z) - Independent operation of two waveguide-integrated quantum emitters [2.658888962967589]
We demonstrate the resonant excitation of two quantum dots in a photonic integrated circuit for on-chip single-photon generation.
Our work solves an outstanding challenge in quantum photonics by realizing the key enabling functionality of how to scale-up deterministic single-photon sources.
arXiv Detail & Related papers (2022-10-18T13:11:19Z) - Engineering symmetry-selective couplings of a superconducting artificial
molecule to microwave waveguides [0.0]
We demonstrate a novel coupling scheme between an artificial molecule comprising two identical, strongly coupled transmon qubits, and two microwave waveguides.
We show that this coupling arrangement makes it possible to straightforwardly generate spatially-separated Bell states propagating across the waveguides.
We envisage further applications to quantum thermodynamics, microwave photodetection, and photon-photon gates.
arXiv Detail & Related papers (2022-02-24T17:16:11Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Tunable Anderson Localization of Dark States [146.2730735143614]
We experimentally study Anderson localization in a superconducting waveguide quantum electrodynamics system.
We observe an exponential suppression of the transmission coefficient in the vicinity of its subradiant dark modes.
The experiment opens the door to the study of various localization phenomena on a new platform.
arXiv Detail & Related papers (2021-05-25T07:52:52Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Programmable directional emitter and receiver of itinerant microwave
photons in a waveguide [0.0]
The proposed device is an artificial molecule composed of two qubits coupled to a waveguide a quarter-wavelength apart.
We show that a photon is emitted directionally as a result of the destructive interference occurring either at the right or left of the qubits.
This artificial molecule possesses the capability of absorbing and transmitting an incoming photon on-demand.
arXiv Detail & Related papers (2020-04-04T12:53:08Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.