論文の概要: Learning from Two Decades of Blood Pressure Data: Demography-Specific Patterns Across 75 Million Patient Encounters
- arxiv url: http://arxiv.org/abs/2402.01598v3
- Date: Wed, 24 Apr 2024 03:35:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-26 23:27:32.647562
- Title: Learning from Two Decades of Blood Pressure Data: Demography-Specific Patterns Across 75 Million Patient Encounters
- Title(参考訳): 血圧データから学ぶ:7500万人の患者を対象にしたデモグラフィー
- Authors: Seyedeh Somayyeh Mousavi, Yuting Guo, Abeed Sarker, Reza Sameni,
- Abstract要約: 高血圧は世界的な健康上の問題であり、血圧動態の効果的なモニタリングと分析の必要性を浮き彫りにしている。
米国ジョージア州のエモリー・ヘルスケアで2000年から2022年の間に収集された2,054,462名の患者75,636,128名のBPデータセットを分析した。
- 参考スコア(独自算出の注目度): 3.416097871805964
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hypertension is a global health concern with an increasing prevalence, underscoring the need for effective monitoring and analysis of blood pressure (BP) dynamics. We analyzed a substantial BP dataset comprising 75,636,128 records from 2,054,462 unique patients collected between 2000 and 2022 at Emory Healthcare in Georgia, USA, representing a demographically diverse population. We examined and compared population-wide statistics of bivariate changes in systolic BP (SBP) and diastolic BP (DBP) across sex, age, and race/ethnicity. The analysis revealed that males have higher BP levels than females and exhibit a distinct BP profile with age. Notably, average SBP consistently rises with age, whereas average DBP peaks in the forties age group. Among the ethnic groups studied, Blacks have marginally higher BPs and a greater standard deviation. We also discovered a significant correlation between SBP and DBP at the population level, a phenomenon not previously researched. These results emphasize the importance of demography-specific BP analysis for clinical diagnosis and provide valuable insights for developing personalized, demography-specific healthcare interventions.
- Abstract(参考訳): 高血圧は世界的な健康上の問題であり、血圧(BP)動態の効果的なモニタリングと分析の必要性が強調されている。
米国ジョージア州のエモリー・ヘルスケアで2000年から2022年の間に収集された2,054,462人の患者75,636,128件のBPデータから,人口統計学的に多様であった。
性別,年齢,人種・民族の2変量BP (SBP) と糖尿病BP (DBP) の2変量変化の個体群別統計を比較検討した。
分析の結果,雄は雌よりもBP濃度が高く,年齢とともにBPプロファイルが異なっていた。
特に、平均的なSBPは年齢とともに常に上昇し、平均的なDBPは40歳以上のグループでピークとなる。
調査された民族集団の中で、黒人はBPが極端に高く、標準偏差が大きい。
また,SBPとDBPの集団レベルでの有意な相関がみられた。
これらの結果は, 臨床診断における画像診断特異的BP分析の重要性を強調し, パーソナライズされた, 画像診断特異的医療介入の開発に有用な知見を提供する。
関連論文リスト
- Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
近年のゲノムワイド・アソシエーション(GWAS)研究は、複雑な形質の遺伝的基盤を明らかにしているが、非ヨーロッパ系個体の低発現を示している。
そこで本研究では,マルチオミクスデータを用いて,多様な祖先間での疾患予測を改善することができるかを評価する。
論文 参考訳(メタデータ) (2024-04-26T16:39:50Z) - Exploring the limitations of blood pressure estimation using the photoplethysmography signal [0.0]
光プレモグラフィ(N-シメセ)と浸潤動脈血圧(N-IABP)を比較検討した。
N-IABP信号は、SBP(Systolic blood pressure)およびDBP(Distolic blood pressure)のAAMI標準に合致する
BP推定におけるPSGの有用性と限界について検討した。
論文 参考訳(メタデータ) (2024-04-09T14:08:23Z) - Leveraging Large Language Models for Analyzing Blood Pressure Variations
Across Biological Sex from Scientific Literature [3.731841514150172]
高血圧は正常以上の血圧(BP)と定義され、公衆衛生の領域において最も重要である。
既存のBP測定技術と標準は、臨床結果、共同性、または人口統計因子を考慮していないため、バイアスを受ける可能性がある。
大規模言語モデル (LLM) である GPT-35-turbo を用いて, BP の平均偏差値と標準偏差値を自動的に抽出した。
論文 参考訳(メタデータ) (2024-02-02T18:15:51Z) - A Finger on the Pulse of Cardiovascular Health: Estimating Blood Pressure with Smartphone Photoplethysmography-Based Pulse Waveform Analysis [2.4347312660509672]
本研究は, 血圧推定のためのスマートフォンを用いた光プラチスモグラフィー(SPW-BP)の革新的4つの戦略を提案する。
我々は,高次正規化やデータ削除,境界信号再構成など,しばしば無視されるデータ品質改善技術を採用している。
相関とSHAP分析はBP推定を改善するための重要な特徴を同定した。
しかし, Bland-Altman 分析では系統的偏りがみられ, MAE 解析ではAAMI と BHS の精度基準を満たしていないことがわかった。
論文 参考訳(メタデータ) (2024-01-20T05:05:17Z) - Simulation-based Inference for Cardiovascular Models [57.92535897767929]
シミュレーションに基づく推論を用いて、波形をプラプシブルな生理的パラメータにマッピングする逆問題を解決する。
臨床応用5種類のバイオマーカーのin-silico不確実性解析を行った。
我々はMIMIC-III波形データベースを用いて,ビビオとシリカのギャップについて検討した。
論文 参考訳(メタデータ) (2023-07-26T02:34:57Z) - A Survey on Blood Pressure Measurement Technologies: Addressing
Potential Sources of Bias [4.0527913281804135]
血圧モニタリング(BP)は、心臓血管疾患の予防、診断、治療、管理において重要な役割を担っている。
最近のガイドラインでは、定期的な臨床訪問や自宅でのBPモニタリングが推奨されている。
BP測定は、測定やデバイスエラー、人口統計、身体習慣などの要因によって、かなりのバイアスとばらつきを示す可能性がある。
論文 参考訳(メタデータ) (2023-06-14T11:51:11Z) - Evaluate underdiagnosis and overdiagnosis bias of deep learning model on
primary open-angle glaucoma diagnosis in under-served patient populations [64.91773761529183]
原発性オープンアングル緑内障(POAG)はアメリカにおける盲目の主要な原因である。
深層学習は眼底画像を用いたPOAGの検出に広く用いられている。
臨床診断における人間のバイアスは、広く使われているディープラーニングモデルに反映され増幅される可能性がある。
論文 参考訳(メタデータ) (2023-01-26T18:53:09Z) - A Shallow U-Net Architecture for Reliably Predicting Blood Pressure (BP)
from Photoplethysmogram (PPG) and Electrocardiogram (ECG) Signals [1.1695966610359496]
病院で血液圧(BP)の連続モニタリングに使われている方法のほとんどは、侵襲的である。
本研究では,光胸腺図や心電図などの非侵襲的に収集可能な信号からBPを予測するためのオートエンコーダの適用性を検討した。
非常に浅い1次元オートエンコーダは、非常に大きなデータセット上で最先端の性能でSBPとDBPを予測するために関連する特徴を抽出できることがわかった。
論文 参考訳(メタデータ) (2021-11-12T19:34:20Z) - Ambulatory blood pressure monitoring versus office blood pressure
measurement: Are there sex differences? [55.41644538483948]
オフィス血圧測定(英語: Office Blood Pressure Measurement, OBP)は、血圧を24時間で測定する技術である。
本研究の目的は,高血圧を疑う822名の患者において,性差がOBPとABPMの相違に及ぼす影響について検討することである。
論文 参考訳(メタデータ) (2021-06-04T10:09:44Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - Short Term Blood Glucose Prediction based on Continuous Glucose
Monitoring Data [53.01543207478818]
本研究では,デジタル意思決定支援ツールの入力として連続グルコースモニタリング(Continuous Glucose Monitoring, CGM)データを利用する方法について検討する。
短時間の血液グルコース (STBG) 予測において, リカレントニューラルネットワーク (Recurrent Neural Networks, RNN) をどのように利用できるかを検討する。
論文 参考訳(メタデータ) (2020-02-06T16:39:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。