論文の概要: From RAG to QA-RAG: Integrating Generative AI for Pharmaceutical
Regulatory Compliance Process
- arxiv url: http://arxiv.org/abs/2402.01717v1
- Date: Fri, 26 Jan 2024 08:23:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-11 16:28:25.932438
- Title: From RAG to QA-RAG: Integrating Generative AI for Pharmaceutical
Regulatory Compliance Process
- Title(参考訳): RAGからQA-RAGへ:医薬品規制コンプライアンスプロセスのための生成AIの統合
- Authors: Jaewoong Kim (Sungkyunkwan University), Moohong Min (Sungkyunkwan
University)
- Abstract要約: 製薬業界における規制の遵守は、複雑で明るいガイドラインを通じてナビゲートする必要がある。
これらの課題に対処するため,本研究では,生成型AIと検索型拡張生成(RAG)手法を紹介する。
本稿では,QA-RAGの構造と性能評価について詳述し,規制コンプライアンス領域の可能性を強調した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Regulatory compliance in the pharmaceutical industry entails navigating
through complex and voluminous guidelines, often requiring significant human
resources. To address these challenges, our study introduces a chatbot model
that utilizes generative AI and the Retrieval Augmented Generation (RAG)
method. This chatbot is designed to search for guideline documents relevant to
the user inquiries and provide answers based on the retrieved guidelines.
Recognizing the inherent need for high reliability in this domain, we propose
the Question and Answer Retrieval Augmented Generation (QA-RAG) model. In
comparative experiments, the QA-RAG model demonstrated a significant
improvement in accuracy, outperforming all other baselines including
conventional RAG methods. This paper details QA-RAG's structure and performance
evaluation, emphasizing its potential for the regulatory compliance domain in
the pharmaceutical industry and beyond. We have made our work publicly
available for further research and development.
- Abstract(参考訳): 製薬業界における規制の遵守は、複雑で輝かしいガイドラインを通し、しばしば重要な人的資源を必要とする。
これらの課題に対処するために、生成AIと検索拡張生成(RAG)手法を利用したチャットボットモデルを提案する。
このチャットボットは、ユーザからの問い合わせに関連するガイドライン文書を検索し、検索したガイドラインに基づいて回答を提供するように設計されている。
本稿では,本領域における信頼性向上の必要性を認識し,QA-RAGモデルを提案する。
比較実験では、QA-RAGモデルは従来のRAG法を含む全てのベースラインを上回り、精度が大幅に向上した。
本稿では,QA-RAGの構造と性能評価について詳述し,医薬品業界などにおける規制コンプライアンス分野の可能性を強調した。
さらなる研究と開発のために、作業を公開しています。
関連論文リスト
- Comprehensive and Practical Evaluation of Retrieval-Augmented Generation Systems for Medical Question Answering [70.44269982045415]
Retrieval-augmented Generation (RAG) は,大規模言語モデル (LLM) の性能向上のための有望なアプローチとして登場した。
医療用QAデータセットに様々な補助的要素を提供するMedRGB(MedRGB)を導入する。
実験結果から,検索した文書のノイズや誤情報の処理能力に限界があることが判明した。
論文 参考訳(メタデータ) (2024-11-14T06:19:18Z) - An Adaptive Framework for Generating Systematic Explanatory Answer in Online Q&A Platforms [62.878616839799776]
質問応答(QA)性能を向上させるために設計された,革新的なフレームワークであるSynthRAGを提案する。
SynthRAGは動的コンテンツの構造化に適応的なアウトラインを用いることで従来のモデルを改善する。
Zhihuプラットフォーム上のオンラインデプロイメントでは、SynthRAGの回答が注目すべきユーザエンゲージメントを実現していることが明らかになった。
論文 参考訳(メタデータ) (2024-10-23T09:14:57Z) - AT-RAG: An Adaptive RAG Model Enhancing Query Efficiency with Topic Filtering and Iterative Reasoning [0.0]
本稿では,効率的な文書検索と推論のためのトピックモデリングを取り入れた新しい多段階RAGAT-RAGを提案する。
BERTopicを用いてクエリにトピックを動的に割り当て,検索精度と効率を向上する。
その結果,既存手法に比べて精度,完全性,妥当性が著しく向上した。
論文 参考訳(メタデータ) (2024-10-16T01:57:56Z) - A Comprehensive Survey of Retrieval-Augmented Generation (RAG): Evolution, Current Landscape and Future Directions [0.0]
RAGは、検索機構と生成言語モデルを組み合わせることで、出力の精度を高める。
近年の研究では, 検索効率向上のための新しい手法が注目されている。
RAGモデルの堅牢性向上に焦点をあてた今後の研究方向性が提案されている。
論文 参考訳(メタデータ) (2024-10-03T22:29:47Z) - A Knowledge-Centric Benchmarking Framework and Empirical Study for Retrieval-Augmented Generation [4.359511178431438]
Retrieval-Augmented Generation (RAG)は、検索機構を統合することで生成モデルを強化する。
その利点にもかかわらず、RAGは特に現実世界のクエリを効果的に処理する上で、大きな課題に直面している。
本稿では,これらの課題に対処する新しいRAGベンチマークを提案する。
論文 参考訳(メタデータ) (2024-09-03T03:31:37Z) - RAGChecker: A Fine-grained Framework for Diagnosing Retrieval-Augmented Generation [61.14660526363607]
本稿では,検索モジュールと生成モジュールの両方に対して,一連の診断指標を組み込んだ詳細な評価フレームワークであるRAGCheckerを提案する。
RAGCheckerは、他の評価指標よりも、人間の判断との相関が著しく優れている。
RAGCheckerのメトリクスは、より効果的なRAGシステムの開発において研究者や実践者を導くことができる。
論文 参考訳(メタデータ) (2024-08-15T10:20:54Z) - KaPQA: Knowledge-Augmented Product Question-Answering [59.096607961704656]
我々はAdobe AcrobatとPhotoshop製品に焦点を当てた2つのQAデータセットを紹介した。
また、製品QAタスクにおけるモデルの性能を高めるために、新しい知識駆動型RAG-QAフレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-22T22:14:56Z) - DuetRAG: Collaborative Retrieval-Augmented Generation [57.440772556318926]
協調検索拡張生成フレームワークであるDuetRAGが提案されている。
ブートストラップの哲学はドメインフィニングとRAGモデルを同時に統合することである。
論文 参考訳(メタデータ) (2024-05-12T09:48:28Z) - A Survey on RAG Meeting LLMs: Towards Retrieval-Augmented Large Language Models [71.25225058845324]
大規模言語モデル(LLM)は、言語理解と生成において革命的な能力を示している。
Retrieval-Augmented Generation (RAG)は、信頼性と最新の外部知識を提供する。
RA-LLMは、モデルの内部知識に頼るのではなく、外部および権威的な知識ベースを活用するために登場した。
論文 参考訳(メタデータ) (2024-05-10T02:48:45Z) - Retrieval-Augmented Generation for AI-Generated Content: A Survey [38.50754568320154]
このような課題に対処するためのパラダイムとして,レトリーバル拡張生成(RAG)が登場している。
RAGは情報検索プロセスを導入し、利用可能なデータストアから関連オブジェクトを検索することで生成プロセスを強化する。
本稿では,RAG手法をAIGCシナリオに統合する既存の取り組みを概観的にレビューする。
論文 参考訳(メタデータ) (2024-02-29T18:59:01Z) - Prompt-RAG: Pioneering Vector Embedding-Free Retrieval-Augmented
Generation in Niche Domains, Exemplified by Korean Medicine [5.120567378386615]
ニッチドメインにおける生成型大規模言語モデル(LLM)の性能を高めるために,自然言語プロンプトに基づく検索拡張(Prompt-RAG)を提案する。
我々は,韓国医学(KM)および標準医学(CM)文書のベクトル埋め込みを比較し,KM文書埋め込みがトークン重複とより相関し,人為的な文書関連性が低いことを見出した。
その結果,Prompt-RAG は ChatGPT や従来のベクトル埋め込み型RAG などの既存モデルよりも関連性,情報性に優れていた。
論文 参考訳(メタデータ) (2024-01-20T14:59:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。