論文の概要: The Geometry of Queries: Query-Based Innovations in Retrieval-Augmented Generation for Healthcare QA
- arxiv url: http://arxiv.org/abs/2407.18044v2
- Date: Wed, 30 Jul 2025 16:28:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-31 16:14:17.680073
- Title: The Geometry of Queries: Query-Based Innovations in Retrieval-Augmented Generation for Healthcare QA
- Title(参考訳): クエリの幾何学:ヘルスケアQAのための検索型世代におけるクエリベースのイノベーション
- Authors: Eric Yang, Jonathan Amar, Jong Ha Lee, Bhawesh Kumar, Yugang Jia,
- Abstract要約: QB-RAG(QB-RAG)は、医療質問応答における検索機能強化のためのフレームワークである。
QB-RAG の鍵となるコンポーネントは LLM ベースのフィルタリング機構であり、関連する質問と回答可能な質問だけがデータベースに含まれることを保証する。
医療データを用いた経験的評価は,既存の検索手法と比較してQB-RAGの優れた性能を示す。
- 参考スコア(独自算出の注目度): 1.2839205715237014
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deploying Large Language Models (LLMs) for healthcare question answering requires robust methods to ensure accuracy and reliability. This work introduces Query-Based Retrieval Augmented Generation (QB-RAG), a framework for enhancing Retrieval-Augmented Generation (RAG) systems in healthcare question-answering by pre-aligning user queries with a database of curated, answerable questions derived from healthcare content. A key component of QB-RAG is an LLM-based filtering mechanism that ensures that only relevant and answerable questions are included in the database, enabling reliable reference query generation at scale. We provide theoretical motivation for QB-RAG, conduct a comparative analysis of existing retrieval enhancement techniques, and introduce a generalizable, comprehensive evaluation framework that assesses both the retrieval effectiveness and the quality of the generated response based on faithfulness, relevance, and adherence to the guideline. Our empirical evaluation on a healthcare data set demonstrates the superior performance of QB-RAG compared to existing retrieval methods, highlighting its practical value in building trustworthy digital health applications for health question-answering.
- Abstract(参考訳): 医療質問応答のための大規模言語モデル(LLM)のデプロイには、正確性と信頼性を確保するための堅牢な方法が必要である。
本研究は,医療コンテンツから導出されるキュレートされた回答可能な質問のデータベースを用いて,ユーザクエリを事前調整することで,医療質問応答における検索機能強化のためのフレームワークであるクエリベースの検索機能拡張生成(QB-RAG)を紹介する。
QB-RAG の鍵となるコンポーネントは LLM ベースのフィルタリング機構であり、関連する質問と回答可能な質問のみをデータベースに含めて、信頼性の高い参照クエリ生成を可能にする。
我々は,QB-RAGの理論的モチベーションを提供し,既存の検索強化技術の比較分析を行い,その信頼性,妥当性,ガイドラインの遵守性に基づいて,検索の有効性と生成した応答の品質を評価可能な総合的評価フレームワークを提案する。
医療データに対する実証的な評価は、既存の検索手法と比較してQB-RAGの優れた性能を示し、健康質問応答のための信頼できるデジタルヘルスアプリケーションを構築する上での実用的価値を強調した。
関連論文リスト
- Comprehensive and Practical Evaluation of Retrieval-Augmented Generation Systems for Medical Question Answering [70.44269982045415]
Retrieval-augmented Generation (RAG) は,大規模言語モデル (LLM) の性能向上のための有望なアプローチとして登場した。
医療用QAデータセットに様々な補助的要素を提供するMedRGB(MedRGB)を導入する。
実験結果から,検索した文書のノイズや誤情報の処理能力に限界があることが判明した。
論文 参考訳(メタデータ) (2024-11-14T06:19:18Z) - AGENT-CQ: Automatic Generation and Evaluation of Clarifying Questions for Conversational Search with LLMs [53.6200736559742]
エージェント-CQは、世代ステージと評価ステージの2つのステージから構成される。
CrowdLLMは、人間のクラウドソーシング判断をシミュレートして、生成された質問や回答を評価する。
ClariQデータセットの実験では、質問と回答の品質を評価するCrowdLLMの有効性が示されている。
論文 参考訳(メタデータ) (2024-10-25T17:06:27Z) - HealthQ: Unveiling Questioning Capabilities of LLM Chains in Healthcare Conversations [23.09755446991835]
デジタル医療において、大きな言語モデル(LLM)は質問応答能力を高めるために主に利用されてきた。
本稿では,LLMヘルスケアチェーンの問合せ能力を評価するための新しいフレームワークであるHealthQを提案する。
論文 参考訳(メタデータ) (2024-09-28T23:59:46Z) - Evaluating ChatGPT on Nuclear Domain-Specific Data [0.0]
本稿では,大規模言語モデル(LLM)であるChatGPTの,高度に専門化された核データ分野におけるQ&Aタスクへの適用について検討する。
主な焦点は、キュレートされたテストデータセット上でのChatGPTのパフォーマンスの評価である。
LLMにRAGパイプラインを組み込むことにより, 性能の向上が図られた。
論文 参考訳(メタデータ) (2024-08-26T08:17:42Z) - Improving Retrieval-Augmented Generation in Medicine with Iterative Follow-up Questions [42.73799041840482]
i-MedRAGは、過去の情報検索の試みに基づいてフォローアップクエリを反復的に要求するシステムである。
ゼロショットのi-MedRAGは、GPT-3.5上で既存のプロンプトエンジニアリングと微調整の方法をすべて上回ります。
i-MedRAGは、順応的にフォローアップクエリを問い合わせて推論チェーンを形成し、医学的な質問の詳細な分析を提供する。
論文 参考訳(メタデータ) (2024-08-01T17:18:17Z) - RAG-QA Arena: Evaluating Domain Robustness for Long-form Retrieval Augmented Question Answering [61.19126689470398]
Long-form RobustQA (LFRQA)は、7つの異なるドメインにわたる26Kクエリと大きなコーパスをカバーする新しいデータセットである。
RAG-QAアリーナと人間の回答品質判断は高い相関関係にあることを示す。
最も競争力のあるLLMの回答の41.3%のみがLFRQAの回答に好まれており、RAG-QAアリーナは将来の研究の挑戦的な評価プラットフォームであることを示している。
論文 参考訳(メタデータ) (2024-07-19T03:02:51Z) - SeRTS: Self-Rewarding Tree Search for Biomedical Retrieval-Augmented Generation [50.26966969163348]
大規模言語モデル(LLM)は,検索増強世代(RAG)の進展に伴い,生物医学領域において大きな可能性を示した。
既存の検索強化アプローチは、様々なクエリやドキュメント、特に医療知識クエリに対処する上で、課題に直面している。
モンテカルロ木探索(MCTS)と自己回帰パラダイムに基づく自己回帰木探索(SeRTS)を提案する。
論文 参考訳(メタデータ) (2024-06-17T06:48:31Z) - Crafting Interpretable Embeddings by Asking LLMs Questions [89.49960984640363]
大規模言語モデル(LLM)は、自然言語処理タスクの増大に対して、テキスト埋め込みを急速に改善した。
質問応答埋め込み (QA-Emb) を導入し, 各特徴がLLMに対して質問された質問に対する回答を表す。
我々はQA-Embを用いて、言語刺激に対するfMRIボクセル応答を予測するための解釈可能なモデルを柔軟に生成する。
論文 参考訳(メタデータ) (2024-05-26T22:30:29Z) - OLAPH: Improving Factuality in Biomedical Long-form Question Answering [15.585833125854418]
MedLFQAは、バイオメディカルドメインに関連する長文質問回答データセットを用いて再構成されたベンチマークデータセットである。
また,コスト効率と多面的自動評価を利用した,シンプルで斬新なフレームワークであるOLAPHを提案する。
以上の結果から,OLAPHフレームワークでトレーニングした7B LLMでは,医療専門家の回答に匹敵する回答が得られた。
論文 参考訳(メタデータ) (2024-05-21T11:50:16Z) - Tool Calling: Enhancing Medication Consultation via Retrieval-Augmented Large Language Models [10.04914417538886]
大規模言語モデル(LLM)は、様々な言語タスクで顕著な成功を収めてきたが、幻覚や時間的ミスアライメントに悩まされている。
従来のtextitRetrieve-then-Read の代わりに,新しい textitDistill-Retrieve-Read フレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-27T13:11:42Z) - Self-RAG: Learning to Retrieve, Generate, and Critique through
Self-Reflection [74.51523859064802]
我々は、自己回帰検索拡張生成(Self-RAG)と呼ばれる新しいフレームワークを導入する。
自己RAGは、検索と自己回帰によってLMの品質と事実性を高める。
様々なタスクセットにおいて、最先端のLCMや検索強化モデルよりも大幅に優れています。
論文 参考訳(メタデータ) (2023-10-17T18:18:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。