論文の概要: Exploring transfer learning for pathological speech feature prediction:
Impact of layer selection
- arxiv url: http://arxiv.org/abs/2402.01796v1
- Date: Fri, 2 Feb 2024 05:09:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-07 01:50:43.649170
- Title: Exploring transfer learning for pathological speech feature prediction:
Impact of layer selection
- Title(参考訳): 病的音声特徴予測のための伝達学習の探索:層選択の影響
- Authors: Daniela A. Wiepert, Rene L. Utianski, Joseph R. Duffy, John L.
Stricker, Leland R. Barnard, David T. Jones, Hugo Botha
- Abstract要約: 最適な層を選択すると性能が向上するが、最高の層は予測される特徴によって異なり、必ずしも見つからないデータに対してうまく一般化するとは限らない。
学習された重み付け和は、分配における平均的な最良層に匹敵する性能を提供し、分配外データに対するより良い一般化を提供する。
- 参考スコア(独自算出の注目度): 0.4188114563181615
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: There is interest in leveraging AI to conduct automatic, objective
assessments of clinical speech, in turn facilitating diagnosis and treatment of
speech disorders. We explore transfer learning, focusing on the impact of layer
selection, for the downstream task of predicting the presence of pathological
speech. We find that selecting an optimal layer offers large performance
improvements (12.4% average increase in balanced accuracy), though the best
layer varies by predicted feature and does not always generalize well to unseen
data. A learned weighted sum offers comparable performance to the average best
layer in-distribution and has better generalization for out-of-distribution
data.
- Abstract(参考訳): 音声障害の診断と治療を容易にするために、AIを活用して臨床音声の自動的客観的評価を行うことに関心がある。
病的発話の有無を予測する下流課題として,層選択の影響に着目し,伝達学習を検討する。
最適層を選択することで性能が向上する(平均12.4%のバランス精度向上)が、最高の層は予測された特徴によって異なり、常に見当たらないデータによく当てはまるとは限らない。
学習された重み付き和は、平均的最良層内分布に匹敵するパフォーマンスを提供し、分散外データのより優れた一般化を提供する。
関連論文リスト
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
1p/19q遺伝子の同時欠失は、低グレードグリオーマの臨床成績と関連している。
本研究の目的は,MRIを用いた畳み込みニューラルネットワークを脳がん検出に活用することである。
論文 参考訳(メタデータ) (2024-09-29T07:04:26Z) - Evaluating Echo State Network for Parkinson's Disease Prediction using
Voice Features [1.2289361708127877]
本研究の目的は,偽陰性の最小化と高精度化を両立できる診断モデルを開発することである。
Echo State Networks (ESN)、Random Forest、k-nearest Neighbors、Support Vector、Extreme Gradient Boosting、Decision Treeなど、さまざまな機械学習手法が採用され、徹底的に評価されている。
ESNは83%の症例で8%未満の偽陰性率を維持している。
論文 参考訳(メタデータ) (2024-01-28T14:39:43Z) - Wav2vec-based Detection and Severity Level Classification of Dysarthria
from Speech [15.150153248025543]
事前訓練したwav2vec 2.0モデルは, 検出および重度分類システムを構築するための特徴抽出器として研究されている。
一般的なUA音声データベースを用いて実験を行った。
論文 参考訳(メタデータ) (2023-09-25T13:00:33Z) - A Few-Shot Approach to Dysarthric Speech Intelligibility Level
Classification Using Transformers [0.0]
発声障害(Dysarthria)は、言葉の発音が難しいことによるコミュニケーションを妨げる言語障害である。
文献の多くは、変形性音声に対するASRシステムの改善に焦点を当てている。
この研究は、変形の有無を正確に分類できるモデルを開発することを目的としている。
論文 参考訳(メタデータ) (2023-09-17T17:23:41Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
変形性膝関節症 (KOA) は膝関節の慢性的な痛みと硬直を引き起こす疾患である。
我々は,Swin Transformer を用いて KOA の重大度を予測する自動手法を提案する。
論文 参考訳(メタデータ) (2023-07-10T09:49:30Z) - Tissue Classification During Needle Insertion Using Self-Supervised
Contrastive Learning and Optical Coherence Tomography [53.38589633687604]
針先端で取得した複雑なCT信号の位相および強度データから組織を分類するディープニューラルネットワークを提案する。
トレーニングセットの10%で、提案した事前学習戦略により、モデルが0.84のF1スコアを達成するのに対して、モデルが0.60のF1スコアを得るのに対して、モデルが0.84のF1スコアを得るのに役立ちます。
論文 参考訳(メタデータ) (2023-04-26T14:11:04Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
そこで本稿では, 放射線学者が注釈付けした大規模データセットからの転写学習を活用して, 小さい付加データセットで利用できる組織学的スコアを予測することを提案する。
我々は,肝硬変の予測を改善するために,異なる事前訓練法,すなわち弱い指導法と自己指導法を比較した。
この方法は、METAVIRスコアのベースライン分類を上回り、AUCが0.84、バランスの取れた精度が0.75に達する。
論文 参考訳(メタデータ) (2023-02-16T17:06:23Z) - Adaptation of Autoencoder for Sparsity Reduction From Clinical Notes
Representation Learning [0.19573380763700707]
本稿では,臨床ノート表現の空間的縮小を生かしたオートエンコーダ学習アルゴリズムを提案する。
その動機は, 臨床注記表現特徴空間の次元を小さくすることで, スパースな高次元データを圧縮する方法を決定することである。
提案手法により,評価毎に最大3%の性能向上が得られた。
論文 参考訳(メタデータ) (2022-09-26T16:37:37Z) - Multiple Time Series Fusion Based on LSTM An Application to CAP A Phase
Classification Using EEG [56.155331323304]
本研究では,深層学習に基づく脳波チャンネルの特徴レベル融合を行う。
チャネル選択,融合,分類手順を2つの最適化アルゴリズムで最適化した。
論文 参考訳(メタデータ) (2021-12-18T14:17:49Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
本稿では,エンド・ツー・エンドのMB腫瘍分類を提案し,様々な入力サイズとネットワーク次元の一致した移動学習を提案する。
161ケースのデータセットを用いて、より大規模な入力解像度を持つ事前学習されたEfficientNetが、大幅な性能改善をもたらすことを実証した。
論文 参考訳(メタデータ) (2021-09-10T13:07:11Z) - Optimization of Genomic Classifiers for Clinical Deployment: Evaluation
of Bayesian Optimization to Select Predictive Models of Acute Infection and
In-Hospital Mortality [0.0]
血液から特定の遺伝子の発現レベルを定量化することにより、患者の免疫反応を特徴づけることにより、両方のタスクを遂行する潜在的によりタイムリーで正確な手段を示す。
機械学習手法は、デプロイ対応の分類モデルの開発にこの‘ホスト応答’を活用するプラットフォームを提供する。
急性感染症の診断分類器の開発におけるHO法と29の診断マーカーの遺伝子発現による院内死亡率の比較を行った。
論文 参考訳(メタデータ) (2020-03-27T10:22:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。