論文の概要: Efficient implementation of discrete-time quantum walks on quantum computers
- arxiv url: http://arxiv.org/abs/2402.01854v2
- Date: Tue, 9 Apr 2024 12:39:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-10 19:37:28.969494
- Title: Efficient implementation of discrete-time quantum walks on quantum computers
- Title(参考訳): 離散時間量子ウォークの量子コンピュータへの効率的な実装
- Authors: Luca Razzoli, Gabriele Cenedese, Maria Bondani, Giuliano Benenti,
- Abstract要約: 本稿では、離散時間量子ウォーク(DTQW)モデルを実装した効率的でスケーラブルな量子回路を提案する。
DTQWの時間ステップ$t$の場合、提案回路はO(n2 + nt)$2キュービットゲートしか必要とせず、現在の最も効率的な実装は$O(n2 t)$である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum walks have proven to be a universal model for quantum computation and to provide speed-up in certain quantum algorithms. The discrete-time quantum walk (DTQW) model, among others, is one of the most suitable candidates for circuit implementation, due to its discrete nature. Current implementations, however, are usually characterized by quantum circuits of large size and depth, which leads to a higher computational cost and severely limits the number of time steps that can be reliably implemented on current quantum computers. In this work, we propose an efficient and scalable quantum circuit implementing the DTQW on the $2^n$-cycle based on the diagonalization of the conditional shift operator. For $t$ time-steps of the DTQW, the proposed circuit requires only $O(n^2 + nt)$ two-qubit gates compared to the $O(n^2 t)$ of the current most efficient implementation based on quantum Fourier transforms. We test the proposed circuit on an IBM quantum device for a Hadamard DTQW on the $4$- and $8$-cycle characterized by periodic dynamics and recurrent generation of maximally entangled single-particle states. Experimental results are meaningful well beyond the regime of few time steps, paving the way for reliable implementation and use on quantum computers.
- Abstract(参考訳): 量子ウォークは量子計算の普遍的なモデルであり、特定の量子アルゴリズムの高速化を提供することが証明されている。
離散時間量子ウォーク(DTQW)モデルは、その離散性のため、回路実装に最も適した候補の1つである。
しかし、現在の実装は通常、大きなサイズと深さの量子回路によって特徴づけられるため、計算コストが高くなり、現在の量子コンピュータで確実に実装できる時間ステップの数を著しく制限する。
本研究では,条件シフト演算子の対角化に基づくDTQWを2ドル^n$サイクルで実装した,効率的でスケーラブルな量子回路を提案する。
DTQWの時間ステップ$t$の場合、提案回路は量子フーリエ変換に基づく現在の最も効率的な実装の$O(n^2 + nt)$2量子ゲートしか必要としない。
提案回路をIBM量子デバイス上で,アダマールDTQWに対して,周期的ダイナミクスと最大絡み合った単一粒子状態の繰り返し発生を特徴とする4ドルおよび8ドルサイクルで試験した。
実験結果は、少数の時間ステップの体制を超えて、信頼性の高い実装と量子コンピュータへの利用の道を開いた。
関連論文リスト
- Robust Implementation of Discrete-time Quantum Walks in Any Finite-dimensional Quantum System [2.646968944595457]
離散時間量子ウォーク(DTQW)は、回路実装に最も適した選択の1つである。
本稿では,ゲート数および回路深さに関する回路コストを半減することに成功した。
提案手法の工学的卓越性には、近似効率を持つ任意の有限次元量子系にDTQWを実装している。
論文 参考訳(メタデータ) (2024-08-01T13:07:13Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
超伝導プロセッサのための強化学習型量子コンパイラを開発した。
短絡の新規・ハードウェア対応回路の発見能力を示す。
本研究は,効率的な量子コンパイルのためのハードウェアによるソフトウェア設計を実証する。
論文 参考訳(メタデータ) (2024-06-18T01:49:48Z) - On Reducing the Execution Latency of Superconducting Quantum Processors via Quantum Program Scheduling [48.142860424323395]
本稿では,量子資源の利用効率を向上させるためにQPSP(Quantum Program Scheduling Problem)を導入する。
具体的には, 回路幅, 計測ショット数, 提出時間に関する量子プログラムスケジューリング手法を提案し, 実行遅延を低減する。
論文 参考訳(メタデータ) (2024-04-11T16:12:01Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Classical variational optimization of PREPARE circuit for quantum phase
estimation of quantum chemistry Hamiltonians [0.8009842832476994]
本稿では,量子化学における分子ハミルトニアンの量子位相推定のための$textttPREPARE$回路の構成法を提案する。
textttPREPARE$回路は、ハミルトニアンにおける項の係数を確率振幅として符号化する量子状態を生成する。
論文 参考訳(メタデータ) (2023-08-26T05:32:38Z) - Efficient parallelization of quantum basis state shift [0.0]
我々は、異なる方向のシフトを並列に組み込むことで、状態シフトアルゴリズムを最適化する。
これにより、現在知られている方法と比較して量子回路の深さが大幅に減少する。
1次元および周期的なシフトに注目するが、より複雑なケースに拡張できる点に留意する。
論文 参考訳(メタデータ) (2023-04-04T11:01:08Z) - Quantum State Preparation with Optimal Circuit Depth: Implementations
and Applications [10.436969366019015]
我々は、$Theta(n)$-depth回路は、$O(ndlog d)$ acillary qubitsを持つ$Theta(log(nd))で作成可能であることを示す。
我々は、ハミルトンシミュレーション、方程式の線形系解法、量子ランダムアクセスメモリの実現など、異なる量子コンピューティングタスクにおける結果の適用について論じる。
論文 参考訳(メタデータ) (2022-01-27T13:16:30Z) - Depth-efficient proofs of quantumness [77.34726150561087]
量子性の証明は、古典的検証器が信頼できない証明器の量子的利点を効率的に証明できる挑戦応答プロトコルの一種である。
本稿では、証明者が量子回路を一定深度でしか実行できない量子性構成の証明を2つ与える。
論文 参考訳(メタデータ) (2021-07-05T17:45:41Z) - Fast Swapping in a Quantum Multiplier Modelled as a Queuing Network [64.1951227380212]
量子回路をキューネットワークとしてモデル化することを提案する。
提案手法はスケーラビリティが高く,大規模量子回路のコンパイルに必要となる潜在的な速度と精度を有する。
論文 参考訳(メタデータ) (2021-06-26T10:55:52Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
本稿では、生成した状態の古典的ベクトル形式を生成する効率的な読み出しプロトコルを提案する。
我々のプロトコルは、出力状態が入力行列の行空間にある場合に適合する。
我々の技術ツールの1つは、Gram-Schmidt正則手順を実行するための効率的な量子アルゴリズムである。
論文 参考訳(メタデータ) (2020-04-14T11:05:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。