論文の概要: Enhancing Transformer RNNs with Multiple Temporal Perspectives
- arxiv url: http://arxiv.org/abs/2402.02625v2
- Date: Thu, 11 Jul 2024 20:43:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 05:27:26.230640
- Title: Enhancing Transformer RNNs with Multiple Temporal Perspectives
- Title(参考訳): 複数の時間的視点を持つ変圧器RNNの強化
- Authors: Razvan-Gabriel Dumitru, Darius Peteleaza, Mihai Surdeanu,
- Abstract要約: 本稿では、リカレントニューラルネットワーク(RNN)アーキテクチャに適用可能な新しいアプローチである、複数時間視点の概念を紹介する。
この方法は、以前遭遇したテキストの多様な時間的ビューを維持することを含み、コンテキストを解釈する言語モデルの能力を大幅に強化する。
- 参考スコア(独自算出の注目度): 18.884124657093405
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We introduce the concept of multiple temporal perspectives, a novel approach applicable to Recurrent Neural Network (RNN) architectures for enhancing their understanding of sequential data. This method involves maintaining diverse temporal views of previously encountered text, significantly enriching the language models' capacity to interpret context. To show the efficacy of this approach, we incorporate it into the Receptance Weighted Key Value (RWKV) architecture, addressing its inherent challenge of retaining all historical information within a single hidden state. Notably, this improvement is achieved with a minimal increase in the number of parameters --even as little as $0.04\%$ of the original number of parameters. Further, the additional parameters necessary for the multiple temporal perspectives are fine-tuned with minimal computational overhead, avoiding the need for a full pre-training. The resulting model maintains linear computational complexity during prompt inference, ensuring consistent efficiency across various sequence lengths. The empirical results and ablation studies included in our research validate the effectiveness of our approach, showcasing improved performance across multiple benchmarks. The code, model weights and datasets are open-sourced at: https://github.com/RazvanDu/TemporalRNNs.
- Abstract(参考訳): 本稿では、逐次データに対する理解を高めるために、リカレントニューラルネットワーク(RNN)アーキテクチャに適用可能な新しいアプローチである、多重時間視点の概念を紹介する。
この方法は、以前遭遇したテキストの多様な時間的ビューを維持することを含み、コンテキストを解釈する言語モデルの能力を大幅に強化する。
このアプローチの有効性を示すため,Receptance Weighted Key Value (RWKV) アーキテクチャに組み込んだ。
特に、この改善はパラメータの数を最小限に増やすことで達成される。
さらに、複数の時間的視点に必要な追加パラメータは、計算オーバーヘッドを最小限に抑えて微調整され、完全な事前学習が不要になる。
結果として得られるモデルは、プロンプト推論中に線形計算の複雑さを維持し、様々な列の長さにわたって一貫した効率を確保する。
本研究に含まれる実験結果とアブレーション研究は,本手法の有効性を検証し,複数のベンチマークにおける性能向上を示すものである。
コード、モデルウェイト、データセットは、https://github.com/RazvanDu/TemporalRNNsでオープンソース化されている。
関連論文リスト
- COrAL: Order-Agnostic Language Modeling for Efficient Iterative Refinement [80.18490952057125]
反復改良は、複雑なタスクにおける大規模言語モデル(LLM)の能力を高める効果的なパラダイムとして登場した。
我々はこれらの課題を克服するために、コンテキストワイズ順序非依存言語モデリング(COrAL)を提案する。
当社のアプローチでは、管理可能なコンテキストウィンドウ内で複数のトークン依存関係をモデル化しています。
論文 参考訳(メタデータ) (2024-10-12T23:56:19Z) - POMONAG: Pareto-Optimal Many-Objective Neural Architecture Generator [4.09225917049674]
Transferable NASが登場し、データセット依存からタスク依存への探索プロセスを一般化した。
本稿では多目的拡散プロセスを通じて拡散NAGを拡張するPOMONAGを紹介する。
結果は、NAS201とMobileNetV3の2つの検索スペースで検証され、15の画像分類データセットで評価された。
論文 参考訳(メタデータ) (2024-09-30T16:05:29Z) - Consensus-Adaptive RANSAC [104.87576373187426]
本稿では,パラメータ空間の探索を学習する新しいRANSACフレームワークを提案する。
注意機構は、ポイント・ツー・モデル残差のバッチで動作し、軽量のワンステップ・トランスフォーマーで見いだされたコンセンサスを考慮するために、ポイント・ツー・モデル推定状態を更新する。
論文 参考訳(メタデータ) (2023-07-26T08:25:46Z) - Efficient Parametric Approximations of Neural Network Function Space
Distance [6.117371161379209]
モデルパラメータとトレーニングデータの重要な特性をコンパクトに要約して、データセット全体を保存または/または反復することなく後で使用できるようにすることが、しばしば有用である。
我々は,FSD(Function Space Distance)をトレーニングセット上で推定することを検討する。
本稿では、線形化活性化TRick (LAFTR) を提案し、ReLUニューラルネットワークに対するFSDの効率的な近似を導出する。
論文 参考訳(メタデータ) (2023-02-07T15:09:23Z) - Deep Generative model with Hierarchical Latent Factors for Time Series
Anomaly Detection [40.21502451136054]
本研究は、時系列異常検出のための新しい生成モデルであるDGHLを提示する。
トップダウンの畳み込みネットワークは、新しい階層的な潜在空間を時系列ウィンドウにマッピングし、時間ダイナミクスを利用して情報を効率的にエンコードする。
提案手法は,4つのベンチマーク・データセットにおいて,現在の最先端モデルよりも優れていた。
論文 参考訳(メタデータ) (2022-02-15T17:19:44Z) - Efficient Nearest Neighbor Language Models [114.40866461741795]
非パラメトリックニューラルネットワークモデル(NLM)は、外部データストアを用いてテキストの予測分布を学習する。
比較性能を維持しながら、推論速度の最大6倍の高速化を実現する方法を示す。
論文 参考訳(メタデータ) (2021-09-09T12:32:28Z) - Interpretable Feature Construction for Time Series Extrinsic Regression [0.028675177318965035]
一部のアプリケーション領域では、対象変数が数値であり、その問題は時系列外部回帰(TSER)として知られている。
TSERの文脈における頑健で解釈可能な特徴構築と選択のためのベイズ法の拡張を提案する。
私たちのアプローチは、TSERに取り組むためのリレーショナルな方法を利用します:(i)、リレーショナルデータスキームに格納されている時系列の多様で単純な表現を構築し、(ii)二次テーブルからデータを「フラット化」するために解釈可能な機能を構築するためにプロポジション化技術を適用します。
論文 参考訳(メタデータ) (2021-03-15T08:12:19Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
本研究では,空間情報を用いた複雑な多次元時系列データを処理するための新しいディープセルリカレントニューラルネットワーク(DCRNN)アーキテクチャを提案する。
提案するアーキテクチャは,文献に比較して,学習可能なパラメータをかなり少なくしつつ,最先端の性能を実現している。
論文 参考訳(メタデータ) (2021-01-12T20:08:18Z) - Benchmarking Deep Learning Interpretability in Time Series Predictions [41.13847656750174]
モデル予測における入力特徴の重要性を強調するために、サリエンシ法が広く用いられている。
そこで我々は,多様なニューラルアーキテクチャにまたがって,サリエンシに基づく様々な解釈可能性手法の性能を広範囲に比較した。
論文 参考訳(メタデータ) (2020-10-26T22:07:53Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
多変量時系列データに特化して設計された汎用グラフニューラルネットワークフレームワークを提案する。
グラフ学習モジュールを用いて,変数間の一方向関係を自動的に抽出する。
提案手法は,4つのベンチマークデータセットのうち3つにおいて,最先端のベースライン手法よりも優れている。
論文 参考訳(メタデータ) (2020-05-24T04:02:18Z) - Transformer Hawkes Process [79.16290557505211]
本稿では,長期的依存関係を捕捉する自己認識機構を利用したTransformer Hawkes Process (THP) モデルを提案する。
THPは、有意なマージンによる可能性と事象予測の精度の両方の観点から、既存のモデルより優れている。
本稿では、THPが関係情報を組み込む際に、複数の点過程を学習する際の予測性能の改善を実現する具体例を示す。
論文 参考訳(メタデータ) (2020-02-21T13:48:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。