論文の概要: Discounted Adaptive Online Learning: Towards Better Regularization
- arxiv url: http://arxiv.org/abs/2402.02720v2
- Date: Tue, 18 Jun 2024 18:47:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-22 05:38:47.872744
- Title: Discounted Adaptive Online Learning: Towards Better Regularization
- Title(参考訳): Discounted Adaptive Online Learning: to improve regularization
- Authors: Zhiyu Zhang, David Bombara, Heng Yang,
- Abstract要約: 敵対的非定常環境におけるオンライン学習について検討する。
適応的アルゴリズム(例:Optimal)を提案し,適応的でないベースラインを広く改良する。
また、(Gibbs and Candes, 2021)スタイルのオンライン共形予測問題についても検討する。
- 参考スコア(独自算出の注目度): 5.5899168074961265
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study online learning in adversarial nonstationary environments. Since the future can be very different from the past, a critical challenge is to gracefully forget the history while new data comes in. To formalize this intuition, we revisit the discounted regret in online convex optimization, and propose an adaptive (i.e., instance optimal), FTRL-based algorithm that improves the widespread non-adaptive baseline -- gradient descent with a constant learning rate. From a practical perspective, this refines the classical idea of regularization in lifelong learning: we show that designing good regularizers can be guided by the principled theory of adaptive online optimization. Complementing this result, we also consider the (Gibbs and Cand\`es, 2021)-style online conformal prediction problem, where the goal is to sequentially predict the uncertainty sets of a black-box machine learning model. We show that the FTRL nature of our algorithm can simplify the conventional gradient-descent-based analysis, leading to instance-dependent performance guarantees.
- Abstract(参考訳): 敵対的非定常環境におけるオンライン学習について検討する。
未来は過去と大きく異なる可能性があるため、新しいデータが入り込む間、歴史を優雅に忘れることが重要な課題だ。
この直観を定式化するために、オンライン凸最適化における減少した後悔を再考し、適応的(例えば最適な)FTRLベースのアルゴリズムを提案する。
実践的な観点から、これは生涯学習における正規化という古典的な考え方を洗練させ、優れた正規化器を設計することは、適応的オンライン最適化の原理理論によって導かれることを示す。
この結果の補完として、ブラックボックス機械学習モデルの不確実性セットを逐次予測することを目的とした、(Gibbs and Cand\`es, 2021)スタイルのオンライン共形予測問題についても検討する。
提案アルゴリズムのFTRL特性は,従来の勾配差に基づく解析を単純化し,インスタンスに依存した性能保証を実現する。
関連論文リスト
- Online-BLS: An Accurate and Efficient Online Broad Learning System for Data Stream Classification [52.251569042852815]
オンライン更新毎にクローズドフォームソリューションを備えたオンライン広範学習システムフレームワークを導入する。
我々は,効果的な重み推定アルゴリズムと効率的なオンライン更新戦略を設計する。
我々のフレームワークは、コンセプトドリフトを伴うデータストリームシナリオに自然に拡張され、最先端のベースラインを超えます。
論文 参考訳(メタデータ) (2025-01-28T13:21:59Z) - Adaptive Conformal Inference by Betting [51.272991377903274]
データ生成プロセスについて仮定することなく適応型共形推論の問題を考察する。
適応型共形推論のための既存のアプローチは、オンライン勾配勾配の変種を用いたピンボール損失の最適化に基づいている。
本稿では,パラメータフリーなオンライン凸最適化手法を利用した適応型共形推論手法を提案する。
論文 参考訳(メタデータ) (2024-12-26T18:42:08Z) - Gradient-Variation Online Learning under Generalized Smoothness [56.38427425920781]
勾配変分オンライン学習は、オンライン関数の勾配の変化とともにスケールする後悔の保証を達成することを目的としている。
ニューラルネットワーク最適化における最近の取り組みは、一般化された滑らかさ条件を示唆し、滑らかさは勾配ノルムと相関する。
ゲームにおける高速収束と拡張逆最適化への応用について述べる。
論文 参考訳(メタデータ) (2024-08-17T02:22:08Z) - Improving Adaptive Online Learning Using Refined Discretization [44.646191058243645]
リプシッツ損失を伴う制約のないオンライン線形最適化について検討する。
インスタンス最適性の追求に動機づけられ,我々は新しいアルゴリズムを提案する。
これらの結果の中心は、オンライン学習に対する継続的な時間的アプローチである。
論文 参考訳(メタデータ) (2023-09-27T21:54:52Z) - Adaptive Fairness-Aware Online Meta-Learning for Changing Environments [29.073555722548956]
公正を意識したオンライン学習フレームワークは、継続的な生涯学習環境のための強力なツールとして生まれてきた。
既存の手法は、データに対するi.i.dの仮定を多用し、フレームワークに静的な後悔の分析を提供する。
バイアス制御とモデル精度の両方で変化する環境に適応できる適応的公平性を考慮したオンラインメタ学習アルゴリズムであるFairSAOMLを提案する。
論文 参考訳(メタデータ) (2022-05-20T15:29:38Z) - Near-optimal Offline Reinforcement Learning with Linear Representation:
Leveraging Variance Information with Pessimism [65.46524775457928]
オフライン強化学習は、オフライン/歴史的データを活用して、シーケンシャルな意思決定戦略を最適化しようとしている。
線形モデル表現を用いたオフライン強化学習の統計的限界について検討する。
論文 参考訳(メタデータ) (2022-03-11T09:00:12Z) - Last Layer Marginal Likelihood for Invariance Learning [12.00078928875924]
我々は、より大きな確率関数のクラスに対する推論を行うことができるような、限界確率に対する新しい下界を導入する。
我々は、最後の層にガウス的プロセスを持つアーキテクチャを使用することで、このアプローチをニューラルネットワークに導入することに取り組んでいます。
論文 参考訳(メタデータ) (2021-06-14T15:40:51Z) - COMBO: Conservative Offline Model-Based Policy Optimization [120.55713363569845]
ディープニューラルネットワークのような複雑なモデルによる不確実性推定は困難であり、信頼性が低い。
我々は,サポート外状態動作の値関数を正規化するモデルベースオフラインRLアルゴリズムCOMBOを開発した。
従来のオフラインモデルフリーメソッドやモデルベースメソッドと比べて、comboは一貫してパフォーマンスが良いことが分かりました。
論文 参考訳(メタデータ) (2021-02-16T18:50:32Z) - LQF: Linear Quadratic Fine-Tuning [114.3840147070712]
本稿では,非線形微調整に匹敵する性能を実現する事前学習モデルの線形化手法を提案する。
LQFはアーキテクチャの単純な変更、損失関数、そして一般的に分類に使用される最適化で構成されている。
論文 参考訳(メタデータ) (2020-12-21T06:40:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。