論文の概要: Pixel-Wise Color Constancy via Smoothness Techniques in Multi-Illuminant
Scenes
- arxiv url: http://arxiv.org/abs/2402.02922v1
- Date: Mon, 5 Feb 2024 11:42:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-06 16:34:16.647522
- Title: Pixel-Wise Color Constancy via Smoothness Techniques in Multi-Illuminant
Scenes
- Title(参考訳): マルチイルミナントシーンにおけるスムースネス技術による画素単位のカラーコンポータンス
- Authors: Umut Cem Entok, Firas Laakom, Farhad Pakdaman, Moncef Gabbouj
- Abstract要約: 複数光源による画素ワイズ照明図を学習し,新しい多照度カラーコンスタント法を提案する。
提案手法は, 隣接する画素内のスムーズさを, 全変動損失でトレーニングを正則化することによって実施する。
さらに、エッジを保ちながら、推定画像の自然な外観を高めるために、両側フィルタを設ける。
- 参考スコア(独自算出の注目度): 16.176896461798993
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Most scenes are illuminated by several light sources, where the traditional
assumption of uniform illumination is invalid. This issue is ignored in most
color constancy methods, primarily due to the complex spatial impact of
multiple light sources on the image. Moreover, most existing multi-illuminant
methods fail to preserve the smooth change of illumination, which stems from
spatial dependencies in natural images. Motivated by this, we propose a novel
multi-illuminant color constancy method, by learning pixel-wise illumination
maps caused by multiple light sources. The proposed method enforces smoothness
within neighboring pixels, by regularizing the training with the total
variation loss. Moreover, a bilateral filter is provisioned further to enhance
the natural appearance of the estimated images, while preserving the edges.
Additionally, we propose a label-smoothing technique that enables the model to
generalize well despite the uncertainties in ground truth. Quantitative and
qualitative experiments demonstrate that the proposed method outperforms the
state-of-the-art.
- Abstract(参考訳): ほとんどのシーンは、伝統的な一様照明の仮定が無効であるいくつかの光源によって照らされる。
この問題は、主に複数の光源が画像に複雑な空間的影響をもたらすため、ほとんどのカラーコンステンシー法では無視される。
さらに、既存の多くの多重照度法は、自然画像の空間依存性から生じる照明の滑らかな変化を保存できない。
そこで本研究では,複数光源による画素毎の照明マップを学習し,多色コンテンタンス法を提案する。
提案手法は,全変動損失を伴うトレーニングを正則化することにより,隣接画素内の滑らかさを強制する。
さらに、エッジを保ちながら、推定画像の自然な外観を高めるために、二元フィルタを更に設定する。
さらに,基礎的真理の不確実性にも拘わらず,モデルがうまく一般化できるラベルスモーニング手法を提案する。
定量的および定性的な実験により,提案手法が最先端技術より優れていることを示す。
関連論文リスト
- Dual High-Order Total Variation Model for Underwater Image Restoration [13.789310785350484]
水中画像の高画質化と復元(UIER)は,水中画像の画質向上のための重要な手段である。
拡張水中画像形成モデル(UIFM)に基づく効果的な変分フレームワークを提案する。
提案フレームワークでは,重み係数に基づく色補正とカラーバランスを組み合わせることで,減衰した色チャネルを補償し,色キャストを除去する。
論文 参考訳(メタデータ) (2024-07-20T13:06:37Z) - NeISF: Neural Incident Stokes Field for Geometry and Material Estimation [50.588983686271284]
多視点逆レンダリングは、異なる視点で撮影された一連の画像から形状、材料、照明などのシーンパラメータを推定する問題である。
本稿では,偏光手がかりを用いた曖昧さを低減する多視点逆フレームワークNeISFを提案する。
論文 参考訳(メタデータ) (2023-11-22T06:28:30Z) - Diffusion Posterior Illumination for Ambiguity-aware Inverse Rendering [63.24476194987721]
画像からシーン特性を推定する逆レンダリングは、困難な逆問題である。
既存のソリューションの多くは、プリエントを逆レンダリングパイプラインに組み込んで、プラウシブルなソリューションを奨励している。
本稿では,自然照明マップ上で事前学習した確率拡散モデルを最適化フレームワークに統合する手法を提案する。
論文 参考訳(メタデータ) (2023-09-30T12:39:28Z) - Diving into Darkness: A Dual-Modulated Framework for High-Fidelity
Super-Resolution in Ultra-Dark Environments [51.58771256128329]
本稿では,低照度超解像課題の性質を深く理解しようとする,特殊二変調学習フレームワークを提案する。
Illuminance-Semantic Dual Modulation (ISDM) コンポーネントを開発した。
包括的実験は、我々のアプローチが多様で挑戦的な超低照度条件に適用可能であることを示す。
論文 参考訳(メタデータ) (2023-09-11T06:55:32Z) - Improving Lens Flare Removal with General Purpose Pipeline and Multiple
Light Sources Recovery [69.71080926778413]
フレアアーティファクトは、画像の視覚的品質と下流のコンピュータビジョンタスクに影響を与える。
現在の方法では、画像信号処理パイプラインにおける自動露光やトーンマッピングは考慮されていない。
本稿では、ISPを再検討し、より信頼性の高い光源回収戦略を設計することで、レンズフレア除去性能を向上させるソリューションを提案する。
論文 参考訳(メタデータ) (2023-08-31T04:58:17Z) - Generative Models for Multi-Illumination Color Constancy [23.511249515559122]
そこで本研究では,種(物理駆動)に基づく多照色濃度法を提案する。
GANを用いて照明推定問題を画像から画像へのドメイン変換問題としてモデル化する。
単照度および多照度データセットを用いた実験により,本手法がソタ法より優れていることが示された。
論文 参考訳(メタデータ) (2021-09-02T12:24:40Z) - Intrinsic Image Transfer for Illumination Manipulation [1.2387676601792899]
本稿では,照明操作のための固有画像転送(IIT)アルゴリズムを提案する。
2つの照明面間の局所的な画像変換を生成する。
本報告では,本質的な画像分解を行うことなく,全ての損失を低減できることを示す。
論文 参考訳(メタデータ) (2021-07-01T19:12:24Z) - Shed Various Lights on a Low-Light Image: Multi-Level Enhancement Guided
by Arbitrary References [17.59529931863947]
本稿では,マルチレベル低光度画像強調のためのニューラルネットワークを提案する。
スタイル転送にインスパイアされたこの手法は,潜在空間内の2つの低結合機能コンポーネントにイメージを分解する。
このようにして、ネットワークは一連の画像対からシーン不変および明るさ固有情報を抽出することを学ぶ。
論文 参考訳(メタデータ) (2021-01-04T07:38:51Z) - Light Stage Super-Resolution: Continuous High-Frequency Relighting [58.09243542908402]
光ステージから採取した人間の顔の「超解像」を学習ベースで解析する手法を提案する。
本手法では,ステージ内の隣接する照明に対応する撮像画像を集約し,ニューラルネットワークを用いて顔の描画を合成する。
我々の学習モデルは、リアルな影と特異なハイライトを示す任意の光方向のレンダリングを生成することができる。
論文 参考訳(メタデータ) (2020-10-17T23:40:43Z) - Deep Bilateral Retinex for Low-Light Image Enhancement [96.15991198417552]
低照度画像は、低コントラスト、色歪み、測定ノイズによる視界の低下に悩まされる。
本稿では,低照度画像強調のための深層学習手法を提案する。
提案手法は最先端の手法と非常に競合し, 極めて低照度で撮影した画像の処理において, 他に比べて大きな優位性を有する。
論文 参考訳(メタデータ) (2020-07-04T06:26:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。