論文の概要: Intrinsic Image Transfer for Illumination Manipulation
- arxiv url: http://arxiv.org/abs/2107.00704v1
- Date: Thu, 1 Jul 2021 19:12:24 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-05 12:53:15.818099
- Title: Intrinsic Image Transfer for Illumination Manipulation
- Title(参考訳): 照明マニピュレーションのための固有画像転送
- Authors: Junqing Huang, Michael Ruzhansky, Qianying Zhang, Haihui Wang
- Abstract要約: 本稿では,照明操作のための固有画像転送(IIT)アルゴリズムを提案する。
2つの照明面間の局所的な画像変換を生成する。
本報告では,本質的な画像分解を行うことなく,全ての損失を低減できることを示す。
- 参考スコア(独自算出の注目度): 1.2387676601792899
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper presents a novel intrinsic image transfer (IIT) algorithm for
illumination manipulation, which creates a local image translation between two
illumination surfaces. This model is built on an optimization-based framework
consisting of three photo-realistic losses defined on the sub-layers factorized
by an intrinsic image decomposition. We illustrate that all losses can be
reduced without the necessity of taking an intrinsic image decomposition under
the well-known spatial-varying illumination illumination-invariant reflectance
prior knowledge. Moreover, with a series of relaxations, all of them can be
directly defined on images, giving a closed-form solution for image
illumination manipulation. This new paradigm differs from the prevailing
Retinex-based algorithms, as it provides an implicit way to deal with the
per-pixel image illumination. We finally demonstrate its versatility and
benefits to the illumination-related tasks such as illumination compensation,
image enhancement, and high dynamic range (HDR) image compression, and show the
high-quality results on natural image datasets.
- Abstract(参考訳): 本稿では、2つの照明面間の局所的な画像変換を生成する照明操作のための新しい固有画像転送(IIT)アルゴリズムを提案する。
このモデルは、本質的な画像分解によって決定されるサブレイヤ上で定義された3つの光現実的損失からなる最適化ベースのフレームワーク上に構築される。
空間変動照明照明不変反射率事前知識の下で内在的な画像分解を必要とせず、すべての損失を低減できることを示す。
さらに、一連の緩和により、これらすべてを画像上で直接定義することができ、画像照明操作のためのクローズドフォームソリューションを提供する。
この新しいパラダイムは、従来のretinexベースのアルゴリズムと異なり、ピクセル単位の画像照明を扱う暗黙的な方法を提供する。
最後に,照明補償,画像強調,高ダイナミックレンジ(hdr)画像圧縮などの照明関連課題に対して,その汎用性とメリットを実証し,自然画像データセットに高品質な結果を示す。
関連論文リスト
- DLEN: Dual Branch of Transformer for Low-Light Image Enhancement in Dual Domains [0.0]
低照度画像強調(LLE)は、低照度条件下で撮影された画像の視覚的品質を改善することを目的としている。
これらの問題は、物体検出、顔認識、自律運転などのコンピュータビジョンタスクのパフォーマンスを妨げる。
本稿では,2つの異なる注意機構を組み込んだ新しいアーキテクチャであるDual Light Enhance Network(DLEN)を提案する。
論文 参考訳(メタデータ) (2025-01-21T15:58:16Z) - PIR: Photometric Inverse Rendering with Shading Cues Modeling and Surface Reflectance Regularization [46.146783750386994]
本稿では,ニューラル・リバース・レンダリングの新しい手法を提案する。
画像の自己陰影を考慮した光源位置の最適化を行う。
表面反射率の分解性を高めるために,新しい正則化を導入する。
論文 参考訳(メタデータ) (2024-08-13T11:39:14Z) - CodeEnhance: A Codebook-Driven Approach for Low-Light Image Enhancement [97.95330185793358]
低照度画像強調(LLIE)は、低照度画像を改善することを目的としている。
既存の手法では、様々な明るさ劣化からの回復の不確実性と、テクスチャと色情報の喪失という2つの課題に直面している。
我々は、量子化された先行値と画像の精細化を利用して、新しいエンハンスメント手法、CodeEnhanceを提案する。
論文 参考訳(メタデータ) (2024-04-08T07:34:39Z) - Pixel-Wise Color Constancy via Smoothness Techniques in Multi-Illuminant
Scenes [16.176896461798993]
複数光源による画素ワイズ照明図を学習し,新しい多照度カラーコンスタント法を提案する。
提案手法は, 隣接する画素内のスムーズさを, 全変動損失でトレーニングを正則化することによって実施する。
さらに、エッジを保ちながら、推定画像の自然な外観を高めるために、両側フィルタを設ける。
論文 参考訳(メタデータ) (2024-02-05T11:42:19Z) - Reti-Diff: Illumination Degradation Image Restoration with Retinex-based
Latent Diffusion Model [59.08821399652483]
照明劣化画像復元(IDIR)技術は、劣化した画像の視認性を改善し、劣化した照明の悪影響を軽減することを目的としている。
これらのアルゴリズムのうち、拡散モデル(DM)に基づく手法は期待できる性能を示しているが、画像レベルの分布を予測する際に、重い計算要求や画素の不一致の問題に悩まされることが多い。
我々は、コンパクトな潜在空間内でDMを活用して、簡潔な指導先を生成することを提案し、IDIRタスクのためのReti-Diffと呼ばれる新しいソリューションを提案する。
Reti-Diff は Retinex-based Latent DM (RLDM) と Retinex-Guided Transformer (RG) の2つの鍵成分からなる。
論文 参考訳(メタデータ) (2023-11-20T09:55:06Z) - Low-Light Image Enhancement with Illumination-Aware Gamma Correction and
Complete Image Modelling Network [69.96295927854042]
低照度環境は通常、情報の少ない大規模な暗黒地帯に繋がる。
本稿では,ガンマ補正の有効性を深層ネットワークのモデリング能力と統合することを提案する。
指数関数演算は高い計算複雑性をもたらすので、Taylor Series を用いてガンマ補正を近似することを提案する。
論文 参考訳(メタデータ) (2023-08-16T08:46:51Z) - Enhancing Low-light Light Field Images with A Deep Compensation Unfolding Network [52.77569396659629]
本稿では,低光環境下で撮像した光場(LF)画像の復元に,DCUNet(Deep compensation network openfolding)を提案する。
このフレームワークは、中間拡張結果を使用して照明マップを推定し、展開プロセスで新しい拡張結果を生成する。
本稿では,LF画像の特徴を適切に活用するために,擬似明示的特徴相互作用モジュールを提案する。
論文 参考訳(メタデータ) (2023-08-10T07:53:06Z) - Enhancing Low-Light Images in Real World via Cross-Image Disentanglement [58.754943762945864]
そこで本研究では,現実の汚職とミスアライメントされたトレーニング画像からなる,新しい低照度画像強調データセットを提案する。
本モデルでは,新たに提案したデータセットと,他の一般的な低照度データセットの両方に対して,最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2022-01-10T03:12:52Z) - WDRN : A Wavelet Decomposed RelightNet for Image Relighting [6.731863717520707]
WDRNと呼ばれるウェーブレットを分解した新しいエンコーダ・デコーダネットワークを提案する。
また、基底真理像の異なる方向に沿って照明の勾配を効率よく学習するグレーロスと呼ばれる新しい損失関数を提案する。
論文 参考訳(メタデータ) (2020-09-14T18:23:10Z) - Learning Flow-based Feature Warping for Face Frontalization with
Illumination Inconsistent Supervision [73.18554605744842]
Flow-based Feature Warping Model (FFWM) は、正面画像を保存するフォトリアリスティックおよび照明の合成を学ぶ。
Illumination Preserving Module (IPM) を提案する。
Warp Attention Module (WAM) は、機能レベルでのポーズの相違を低減するために導入された。
論文 参考訳(メタデータ) (2020-08-16T06:07:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。