論文の概要: Flora: Low-Rank Adapters Are Secretly Gradient Compressors
- arxiv url: http://arxiv.org/abs/2402.03293v1
- Date: Mon, 5 Feb 2024 18:50:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-06 14:05:43.736095
- Title: Flora: Low-Rank Adapters Are Secretly Gradient Compressors
- Title(参考訳): flora:低ランクアダプターは密かに勾配圧縮機
- Authors: Yongchang Hao, Yanshuai Cao, Lili Mou
- Abstract要約: 低ランク適応(LoRA)は、少ないパラメータをトレーニングすることで最適化状態を低減するために提案される。
LoRAは全体の重量更新行列を低ランクに制限し、モデル性能を制限している。
本稿では,プロジェクション行列を再サンプリングすることで高階更新を実現する Flora を提案する。
- 参考スコア(独自算出の注目度): 33.96967104979137
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite large neural networks demonstrating remarkable abilities to complete
different tasks, they require excessive memory usage to store the optimization
states for training. To alleviate this, the low-rank adaptation (LoRA) is
proposed to reduce the optimization states by training fewer parameters.
However, LoRA restricts overall weight update matrices to be low-rank, limiting
the model performance. In this work, we investigate the dynamics of LoRA and
identify that it can be approximated by a random projection. Based on this
observation, we propose Flora, which is able to achieve high-rank updates by
resampling the projection matrices while enjoying the sublinear space
complexity of optimization states. We conduct experiments across different
tasks and model architectures to verify the effectiveness of our approach.
- Abstract(参考訳): 異なるタスクを完了させる顕著な能力を示す大きなニューラルネットワークにもかかわらず、トレーニングのための最適化状態を保存するには過剰なメモリ使用が必要である。
これを軽減するために、低ランク適応(LoRA)を提案し、少ないパラメータをトレーニングすることで最適化状態を削減する。
しかし、LoRAは全体の重量更新行列を低ランクに制限し、モデルの性能を制限している。
本研究では,LoRAのダイナミクスを調査し,ランダムな投影によって近似できることを示す。
この観察に基づいて,最適化状態のサブ線形空間複雑性を享受しながら,投影行列の再サンプリングにより高ランク更新を実現するフローラを提案する。
さまざまなタスクやモデルアーキテクチャにまたがって実験を行い、アプローチの有効性を検証する。
関連論文リスト
- Less is More: Extreme Gradient Boost Rank-1 Adaption for Efficient Finetuning of LLMs [75.11449420928139]
微調整型大規模言語モデル(LLM)は、訓練済みモデルを下流タスクに適応させる上で重要な技術となっている。
Low-Rank Adaptation (LoRA) は有望な解決法として登場したが、低ランク適応の実用性能と理論的最適性の間にはギャップがある。
本稿では,このギャップを埋める新しいフレームワークであるeXtreme Gradient Boosting LoRAを提案する。
論文 参考訳(メタデータ) (2024-10-25T17:07:13Z) - LoRTA: Low Rank Tensor Adaptation of Large Language Models [70.32218116940393]
Low Rank Adaptation (LoRA) は、下流タスクのための大規模な事前学習モデルに効果的に適応する、PEFT (Efficient Fine Tuning) 手法として人気がある。
モデル更新に低階テンソルパラメトリゼーションを用いる新しい手法を提案する。
提案手法は,大規模言語モデルの微調整に有効であり,比較性能を維持しつつ,パラメータ数の大幅な削減を実現している。
論文 参考訳(メタデータ) (2024-10-05T06:59:50Z) - Flat-LoRA: Low-Rank Adaption over a Flat Loss Landscape [52.98187034726091]
Low-Rank Adaptation (LoRA) は低ランク行列のみを最適化することでモデルを微調整する効率的な方法である。
ロラ空間に平坦に見える解は、全パラメータ空間に鋭い方向が存在し、一般化性能を損なう可能性がある。
フルパラメータ空間の平坦領域に位置する低ランク適応を求める効率的なアプローチであるFlat-LoRAを提案する。
論文 参考訳(メタデータ) (2024-09-22T11:24:10Z) - LoRA-Pro: Are Low-Rank Adapters Properly Optimized? [121.0693322732454]
LoRAとしても知られる低ランク適応は、基礎モデルのパラメータ効率の細かい調整のための顕著な手法として登場した。
計算効率にもかかわらず、LoRAは完全な微調整に比べて性能が劣っている。
低ランク行列の勾配を戦略的に調整することでLoRAの性能を向上させる手法であるLoRA-Proを導入する。
論文 参考訳(メタデータ) (2024-07-25T17:57:12Z) - Compressible Dynamics in Deep Overparameterized Low-Rank Learning & Adaptation [12.07880147193174]
モデルパラメータ内のデータと圧縮可能な力学の固有な低次元構造を利用することで、計算負担を伴わずにパラメータ化の利点を享受できることが示される。
提案手法は,低ランク行列と微調整言語モデルに対して有効であることを示す。
論文 参考訳(メタデータ) (2024-06-06T14:29:49Z) - Run LoRA Run: Faster and Lighter LoRA Implementations [50.347242693025336]
LoRAは、線形層に低ランクアダプタを導入することにより、ニューラルネットワーク内のトレーニング可能なパラメータの数を減らすテクニックである。
本稿では,LoRAの効率的な実装のためのRunLoRAフレームワークを提案する。
実験は、言語モデリングネットワーク上で最大28%のスピードアップを示す。
論文 参考訳(メタデータ) (2023-12-06T10:54:34Z) - Sparse Low-rank Adaptation of Pre-trained Language Models [79.74094517030035]
本稿では,適応過程における固有ランクの動的調整を可能にする疎低ランク適応(SoRA)を提案する。
提案手法は,LoRAを高いランクで初期化すると同時に,一時的に増大するパラメータを効率的に利用することにより,LoRAの表現力を向上する。
実験の結果,SoRAは70%の保持パラメータと70%のトレーニング時間でも,他のベースラインよりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-11-20T11:56:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。