論文の概要: Tweet Influence on Market Trends: Analyzing the Impact of Social Media
Sentiment on Biotech Stocks
- arxiv url: http://arxiv.org/abs/2402.03353v1
- Date: Fri, 26 Jan 2024 15:43:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-11 15:41:01.462734
- Title: Tweet Influence on Market Trends: Analyzing the Impact of Social Media
Sentiment on Biotech Stocks
- Title(参考訳): ツイートが市場のトレンドに与える影響:ソーシャルメディアの感情がバイオテック株に与える影響分析
- Authors: C. Sarai R. Avila
- Abstract要約: 本研究は, ニュース, 企業意見, CEO意見, 競合意見, バイオテクノロジー分野における株式市場行動など, 様々なカテゴリーにおけるツイート感情の関係について検討した。
われわれは、新型コロナウイルス、ワクチン、企業、そしてそれぞれのCEOに関するTwitterのデータとともに、最大かつ最も影響力のある製薬会社10社の過去の株式市場データを分析した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study investigates the relationship between tweet sentiment across
diverse categories: news, company opinions, CEO opinions, competitor opinions,
and stock market behavior in the biotechnology sector, with a focus on
understanding the impact of social media discourse on investor sentiment and
decision-making processes. We analyzed historical stock market data for ten of
the largest and most influential pharmaceutical companies alongside Twitter
data related to COVID-19, vaccines, the companies, and their respective CEOs.
Using VADER sentiment analysis, we examined the sentiment scores of tweets and
assessed their relationships with stock market performance. We employed ARIMA
(AutoRegressive Integrated Moving Average) and VAR (Vector AutoRegression)
models to forecast stock market performance, incorporating sentiment covariates
to improve predictions. Our findings revealed a complex interplay between tweet
sentiment, news, biotech companies, their CEOs, and stock market performance,
emphasizing the importance of considering diverse factors when modeling and
predicting stock prices. This study provides valuable insights into the
influence of social media on the financial sector and lays a foundation for
future research aimed at refining stock price prediction models.
- Abstract(参考訳): 本研究は、ニュース、企業の意見、ceoの意見、ライバルの意見、およびバイオテクノロジー分野における株式市場の行動など、さまざまなカテゴリーにわたるツイート感情の関係を調査し、ソーシャルメディアの会話が投資家の感情や意思決定プロセスに与える影響を理解することに焦点を当てたものである。
われわれは、新型コロナウイルス、ワクチン、企業、そしてそれぞれのCEOに関するTwitterのデータとともに、最大かつ最も影響力のある製薬会社10社の過去の株式市場データを分析した。
VADER感情分析を用いて,つぶやきの感情スコアを測定し,市場パフォーマンスとの関連性を検討した。
我々は、ARIMA(AutoRegressive Integrated Average)モデルとVAR(Vector AutoRegression)モデルを用いて、株式市場のパフォーマンスを予測し、感情共変を取り入れて予測を改善した。
その結果、ツイートの感情、ニュース、バイオテック企業、CEO、および株式市場のパフォーマンスの複雑な相互作用が明らかとなり、株価をモデル化し予測する際のさまざまな要因を検討することの重要性を強調した。
本研究は、ソーシャルメディアが金融セクターに与える影響に関する貴重な知見を提供し、株価予測モデルの改善を目的とした将来の研究の基盤となる。
関連論文リスト
- Beyond Trend Following: Deep Learning for Market Trend Prediction [49.89480853499917]
我々は、将来の市場動向を予測するために人工知能と機械学習技術を使うことを提唱する。
これらの予測は、適切に実行されれば、リターンを増やし、損失を減らすことで資産運用者のパフォーマンスを向上させることができる。
論文 参考訳(メタデータ) (2024-06-10T11:42:30Z) - Effect of Leaders Voice on Financial Market: An Empirical Deep Learning Expedition on NASDAQ, NSE, and Beyond [1.6622844933418388]
異なる分野のリーダーのTwitterハンドルのNLP分析に基づいて、ディープラーニングに基づくモデルを提案し、金融市場のトレンドを予測する。
インドとアメリカの金融市場は、将来他の市場が取られるように、現在の作業で探索されている。
論文 参考訳(メタデータ) (2024-03-18T18:19:08Z) - Emoji Driven Crypto Assets Market Reactions [0.21847754147782888]
我々は、マルチモーダル感情分析に、GPT-4と微調整変換器に基づくBERTモデルを利用する。
これらの洞察は、BTC PriceやVCRIXインデックスといった重要な市場指標と相関する。
以上の結果から,絵文字の感情に基づく戦略が,市場不振の回避に有効であることが示唆された。
論文 参考訳(メタデータ) (2024-02-16T07:05:49Z) - Decoding the Silent Majority: Inducing Belief Augmented Social Graph
with Large Language Model for Response Forecasting [74.68371461260946]
SocialSenseは、既存のソーシャルネットワーク上に信念中心のグラフを誘導するフレームワークであり、グラフベースの伝播によって社会的ダイナミクスを捉える。
本手法は,ゼロショット設定と教師あり設定の両方に対する実験的な評価において,既存の最先端技術を超えている。
論文 参考訳(メタデータ) (2023-10-20T06:17:02Z) - Predicting Financial Market Trends using Time Series Analysis and
Natural Language Processing [0.0]
この調査は、TeslaやAppleといった大手企業の株価を予測するためのツールとして、Twitterの感情の有効性を評価することを目的としている。
以上の結果から, 株価変動の主要な要因は, 肯定性, 否定性, 主観性であることが示唆された。
論文 参考訳(メタデータ) (2023-08-31T21:20:58Z) - Joint Latent Topic Discovery and Expectation Modeling for Financial
Markets [45.758436505779386]
金融市場分析のための画期的な枠組みを提示する。
このアプローチは、投資家の期待を共同でモデル化し、潜伏する株価関係を自動的に掘り下げる最初の方法だ。
私たちのモデルは年率10%を超えるリターンを継続的に達成します。
論文 参考訳(メタデータ) (2023-06-01T01:36:51Z) - Measuring the Effect of Influential Messages on Varying Personas [67.1149173905004]
我々は、ニュースメッセージを見る際にペルソナが持つ可能性のある応答を推定するために、ニュースメディア向けのペルソナに対するレスポンス予測という新しいタスクを提示する。
提案課題は,モデルにパーソナライズを導入するだけでなく,各応答の感情極性と強度も予測する。
これにより、ペルソナの精神状態に関するより正確で包括的な推測が可能になる。
論文 参考訳(メタデータ) (2023-05-25T21:01:00Z) - The Battle of Information Representations: Comparing Sentiment and
Semantic Features for Forecasting Market Trends [0.5249805590164902]
市場の動向を予測するための感情属性よりも文脈埋め込みの形での意味的特徴が重要であるかを検討する。
当社は、NASDAQの資本化による大手企業に関連するTwitter投稿のコーパスとその価格設定について検討する。
以上の結果から,感情的特徴の活用により,有意な頻度で測定値が上昇することが示唆された。
論文 参考訳(メタデータ) (2023-03-24T18:30:15Z) - Evaluating Impact of Social Media Posts by Executives on Stock Prices [0.5429166905724048]
TwitterやRedditのようなソーシャルメディアは、このような影響力のホットスポットになっている。
本稿は,Twitter と Reddit の投稿を用いた株価予測におけるソーシャルメディア投稿の影響について検討する。
論文 参考訳(メタデータ) (2022-11-01T03:45:17Z) - REST: Relational Event-driven Stock Trend Forecasting [76.08435590771357]
既存の手法の欠点に対処するために,rest(relational event-driven stock trend forecasting)フレームワークを提案する。
第1の欠点を是正するため,我々は,株価の文脈をモデル化し,異なる状況下での株価に対する事象情報の影響を学ぶことを提案する。
第2の欠点に対処するために,ストックグラフを構築し,関連する株からイベント情報の影響を伝達する新しい伝播層を設計する。
論文 参考訳(メタデータ) (2021-02-15T07:22:09Z) - A Sentiment Analysis Approach to the Prediction of Market Volatility [62.997667081978825]
金融ニュースとツイートから抽出された感情とFTSE100の動きの関係を調べました。
ニュース見出しから得られた感情は、市場のリターンを予測するシグナルとして使われる可能性があるが、ボラティリティには当てはまらない。
我々は,新たな情報の到着に応じて,市場の変動を予測するための正確な分類器を開発した。
論文 参考訳(メタデータ) (2020-12-10T01:15:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。