論文の概要: Effect of Leaders Voice on Financial Market: An Empirical Deep Learning Expedition on NASDAQ, NSE, and Beyond
- arxiv url: http://arxiv.org/abs/2403.12161v1
- Date: Mon, 18 Mar 2024 18:19:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 18:31:46.197287
- Title: Effect of Leaders Voice on Financial Market: An Empirical Deep Learning Expedition on NASDAQ, NSE, and Beyond
- Title(参考訳): 金融市場におけるリーダーの声の影響:NASDAQ, NSE, その他に関する実証的深層学習調査
- Authors: Arijit Das, Tanmoy Nandi, Prasanta Saha, Suman Das, Saronyo Mukherjee, Sudip Kumar Naskar, Diganta Saha,
- Abstract要約: 異なる分野のリーダーのTwitterハンドルのNLP分析に基づいて、ディープラーニングに基づくモデルを提案し、金融市場のトレンドを予測する。
インドとアメリカの金融市場は、将来他の市場が取られるように、現在の作業で探索されている。
- 参考スコア(独自算出の注目度): 1.6622844933418388
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Financial market like the price of stock, share, gold, oil, mutual funds are affected by the news and posts on social media. In this work deep learning based models are proposed to predict the trend of financial market based on NLP analysis of the twitter handles of leaders of different fields. There are many models available to predict financial market based on only the historical data of the financial component but combining historical data with news and posts of the social media like Twitter is the main objective of the present work. Substantial improvement is shown in the result. The main features of the present work are- a) proposing completely generalized algorithm which is able to generate models for any twitter handle and any financial component, b) predicting the time window for a tweets effect on a stock price c) analyzing the effect of multiple twitter handles for predicting the trend. A detailed survey is done to find out the latest work in recent years in the similar field, find the research gap, and collect the required data for analysis and prediction. State-of-the-art algorithm is proposed and complete implementation with environment is given. An insightful trend of the result improvement considering the NLP analysis of twitter data on financial market components is shown. The Indian and USA financial markets are explored in the present work where as other markets can be taken in future. The socio-economic impact of the present work is discussed in conclusion.
- Abstract(参考訳): 株価、株式、金、石油、相互資金といった金融市場は、ニュースやソーシャルメディアへの投稿の影響を受けている。
本研究では、さまざまな分野のリーダーのTwitterハンドルのNLP分析に基づいて、金融市場の動向を予測するために、ディープラーニングに基づくモデルを提案する。
財務要素の歴史的データだけでなく、歴史的データとTwitterのようなソーシャルメディアのニュースや投稿を組み合わせることで、金融市場を予測できるモデルが、この研究の主目的である。
その結果、実質的な改善が示される。
現在の作品の主な特徴は-
a) Twitterハンドルと金融コンポーネントのモデルを生成することができる完全に一般化されたアルゴリズムを提案すること。
ロ 株価に対するつぶやき効果の時間窓の予測
c) トレンドを予測するために複数のTwitterハンドルの効果を分析すること。
近年の同様の分野における最新の研究の発見、研究ギャップの発見、分析と予測に必要なデータ収集のための詳細な調査が行われている。
State-of-the-artアルゴリズムが提案され,環境との完全な実装が提案されている。
金融市場における Twitter データの NLP 分析を考慮した結果改善の洞察に富んだ傾向を示す。
インドとアメリカの金融市場は、将来他の市場が取られるように、現在の作業で探索されている。
本研究の社会的・経済的影響をまとめる。
関連論文リスト
- Targeted aspect-based emotion analysis to detect opportunities and precaution in financial Twitter messages [8.504685056067144]
同じツイートで、異なる株式市場資産の金銭的感情(肯定的、否定的な予測)を個別に識別できる新たなTABEA(Targeted Aspect-Based Emotion Analysis)システムを提案する。
自然言語処理(NLP)技術と機械学習ストリーミングアルゴリズムに基づいている。
ターゲットの感情、財務的機会、そしてTwitterの予防のために90%以上の精度を達成している。
論文 参考訳(メタデータ) (2024-03-30T16:46:25Z) - AlphaFin: Benchmarking Financial Analysis with Retrieval-Augmented Stock-Chain Framework [48.3060010653088]
我々はAlphaFinデータセットをリリースし、従来の研究データセット、リアルタイム財務データ、手書きのチェーン・オブ・プリート(CoT)データを組み合わせています。
次に、AlphaFinデータセットを使用して、金融分析タスクを効果的に処理するために、Stock-Chainと呼ばれる最先端の手法をベンチマークします。
論文 参考訳(メタデータ) (2024-03-19T09:45:33Z) - FinBen: A Holistic Financial Benchmark for Large Language Models [75.09474986283394]
FinBenは、24の財務タスクにまたがる36のデータセットを含む、最初の大規模なオープンソース評価ベンチマークである。
FinBenは、幅広いタスクとデータセット、ストックトレーディングの最初の評価、新しいエージェントと検索可能な生成(RAG)の評価、およびテキスト要約、質問応答、株式トレーディングのための3つの新しいオープンソース評価データセットを提供する。
論文 参考訳(メタデータ) (2024-02-20T02:16:16Z) - Do Weibo platform experts perform better at predicting stock market? [0.8999666725996978]
Weiboのソーシャルネットワーキングプラットフォームは、感情データ収集のソースとして使用されている。
Weiboのユーザは、認可金融アドバイザー(AFA)と無認可金融アドバイザー(UFA)グループに分けられる。
香港ハンセン指数は、歴史的株式市場の変化データを抽出するために使用されている。
論文 参考訳(メタデータ) (2024-02-12T10:04:54Z) - Predicting Financial Market Trends using Time Series Analysis and
Natural Language Processing [0.0]
この調査は、TeslaやAppleといった大手企業の株価を予測するためのツールとして、Twitterの感情の有効性を評価することを目的としている。
以上の結果から, 株価変動の主要な要因は, 肯定性, 否定性, 主観性であることが示唆された。
論文 参考訳(メタデータ) (2023-08-31T21:20:58Z) - Dynamic Datasets and Market Environments for Financial Reinforcement
Learning [68.11692837240756]
FinRL-Metaは、現実世界の市場からジムスタイルの市場環境へ動的データセットを処理するライブラリである。
我々は,ユーザが新しい取引戦略を設計するための足場として,人気のある研究論文を例示し,再現する。
また、ユーザが自身の結果を視覚化し、相対的なパフォーマンスを評価するために、このライブラリをクラウドプラットフォームにデプロイします。
論文 参考訳(メタデータ) (2023-04-25T22:17:31Z) - The Battle of Information Representations: Comparing Sentiment and
Semantic Features for Forecasting Market Trends [0.5249805590164902]
市場の動向を予測するための感情属性よりも文脈埋め込みの形での意味的特徴が重要であるかを検討する。
当社は、NASDAQの資本化による大手企業に関連するTwitter投稿のコーパスとその価格設定について検討する。
以上の結果から,感情的特徴の活用により,有意な頻度で測定値が上昇することが示唆された。
論文 参考訳(メタデータ) (2023-03-24T18:30:15Z) - FinQA: A Dataset of Numerical Reasoning over Financial Data [52.7249610894623]
我々は、大量の財務文書の分析を自動化することを目的として、財務データに関する深い質問に答えることに重点を置いている。
我々は,金融専門家が作成した財務報告に対して質問回答のペアを用いた,新たな大規模データセットFinQAを提案する。
その結果、人気があり、大規模で、事前訓練されたモデルは、金融知識を得るための専門的な人間には程遠いことが示される。
論文 参考訳(メタデータ) (2021-09-01T00:08:14Z) - Stock Market Analysis with Text Data: A Review [7.789019365796933]
株式市場の動きは、ニュース記事、会社の報告、ソーシャルメディアの議論を通じて共有される公私情報の影響を受けている。
文献のほとんどの研究は、構造化されていない膨大なテキストデータを分析するのに不足している伝統的なアプローチに基づいている。
本研究は、主要な株式市場分析モデル、金融市場予測のためのテキスト表現手法、既存手法の欠点について調査し、今後の研究に向けた有望な方向性を提案する。
論文 参考訳(メタデータ) (2021-06-23T04:31:56Z) - Estimating Fund-Raising Performance for Start-up Projects from a Market
Graph Perspective [58.353799280109904]
市場環境を利用して未公開プロジェクトの資金調達実績を予測するためのグラフベースの市場環境(GME)モデルを提案する。
具体的には、市場環境を利用して未公開プロジェクトの資金調達実績を予測するグラフベースの市場環境(GME)モデルを提案する。
論文 参考訳(メタデータ) (2021-05-27T02:39:30Z) - REST: Relational Event-driven Stock Trend Forecasting [76.08435590771357]
既存の手法の欠点に対処するために,rest(relational event-driven stock trend forecasting)フレームワークを提案する。
第1の欠点を是正するため,我々は,株価の文脈をモデル化し,異なる状況下での株価に対する事象情報の影響を学ぶことを提案する。
第2の欠点に対処するために,ストックグラフを構築し,関連する株からイベント情報の影響を伝達する新しい伝播層を設計する。
論文 参考訳(メタデータ) (2021-02-15T07:22:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。