論文の概要: A retrospective analysis of Montana's 2020 congressional redistricting
map
- arxiv url: http://arxiv.org/abs/2402.03551v1
- Date: Mon, 5 Feb 2024 22:11:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-07 17:33:59.135989
- Title: A retrospective analysis of Montana's 2020 congressional redistricting
map
- Title(参考訳): モンタナ州議会の2020年再分権地図の振り返り分析
- Authors: Kelly McKinnie and Erin Szalda-Petree
- Abstract要約: モンタナ州は、2022年11月の議会選挙に間に合うように、2021年に再分割を行い、州を2つの地区に分割した。
本稿では、再分権過程を解析し、採択された議会地図を、他のすべての可能な地図の空間と比較する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The 2020 decennial census data resulted in an increase from one to two
congressional representatives in the state of Montana. The state underwent its
redistricting process in 2021 in time for the November 2022 congressional
elections, carving the state into two districts. This paper analyzes the
redistricting process and compares the adopted congressional map to the space
of all other possible maps. In particular, we look at the population deviation,
compactness and political outcomes of these maps. We also consider how well two
popular sampling techniques, that sample from the space of possible maps,
approximate the true distributions of these measures.
- Abstract(参考訳): 2020年の国勢調査では、モンタナ州では1人から2人の下院議員が増加した。
州は2021年11月の議会選挙に間に合うように再編成を行い、州を2つの地区に分けた。
本稿では,再編成過程を分析し,採択された議会地図と他の全ての可能な地図の空間を比較した。
特に,これらの地図の人口変動,コンパクト性,政治的成果について考察する。
また,可能な写像の空間からサンプルを採取する2つの一般的なサンプリング手法について検討し,それらの測定値の真の分布を近似する。
関連論文リスト
- Has the Machine Learning Review Process Become More Arbitrary as the
Field Has Grown? The NeurIPS 2021 Consistency Experiment [86.77085171670323]
2014年のNeurIPS実験では、2つの独立した委員会によって10%の会議の提出をレビューし、レビュープロセスにおけるランダム性を定量化した。
両委員会が論文の23%の勧告を受理・棄却することに反対し、審査プロセスがランダムに再実行された場合、2014年度の結果と一致して、受理された論文のリストの約半数が変更されることを観察する。
論文 参考訳(メタデータ) (2023-06-05T21:26:12Z) - Design and analysis of tweet-based election models for the 2021 Mexican
legislative election [55.41644538483948]
選挙日前の6ヶ月の間に、1500万件の選挙関連ツイートのデータセットを使用します。
地理的属性を持つデータを用いたモデルが従来のポーリング法よりも精度と精度で選挙結果を決定することがわかった。
論文 参考訳(メタデータ) (2023-01-02T12:40:05Z) - Mathematically Quantifying Non-responsiveness of the 2021 Georgia
Congressional Districting Plan [3.097163558730473]
並列テンパリング法とReComを併用したメトロポリケートサンプリング手法を応用した。
ジョージア州における地区計画の最初の事例研究を通じて、これらの改善を開拓する。
我々の分析では、ジョージア州の選挙は、この制定された計画の下で、確実に9人の共和党員と5人の民主党員を選出すると予想している。
論文 参考訳(メタデータ) (2022-03-13T02:58:32Z) - Implications of Distance over Redistricting Maps: Central and Outlier
Maps [6.757783454836096]
代表制民主主義では、選挙区を代表を選出する選挙区の集合に分割するために、再分権地図が選択される。
有効な再限定写像は、コンパクトで連続であり、ほぼ同じ人口であるような制約の集合を満たさなければならない。
この事実は地図の再区画化の難しさを招き、党派議会が不公平に好む地図を選ぶことで、おそらくはゲリマンダーにすることができる。
論文 参考訳(メタデータ) (2022-03-02T04:59:30Z) - Measuring Geometric Similarity Across Possible Plans for Automated
Redistricting [0.0]
本稿では,2つの計画の間に同一の選挙区に留まる州の面積や人口の比率に対応する,類似性の解釈的尺度とそれに対応する代入行列を簡潔に紹介する。
次に、直感的な時間でこの測度を計算する方法を示し、潜在的なユースケースを簡潔に示す。
論文 参考訳(メタデータ) (2021-11-17T03:37:25Z) - Compact Redistricting Plans Have Many Spanning Trees [39.779544988993294]
政治的再分権マップの設計と分析において、国勢調査ブロックのグラフのすべての分割の空間から同じ人口の連結部分グラフにサンプリングできることがしばしば有用である。
本稿では,境界分割領域の総長さと,そのような写像がサンプリングされる確率との間には,逆指数関係が成立する。
論文 参考訳(メタデータ) (2021-09-27T23:36:01Z) - Cascaded Residual Density Network for Crowd Counting [63.714719914701014]
本研究では, 群衆数に対する高品質な密度マップを高精度に作成するために, 粗大なアプローチで新しいカスケード残差密度ネットワーク(CRDNet)を提案する。
新たな局所的カウント損失が示され、群衆カウントの精度が向上する。
論文 参考訳(メタデータ) (2021-07-29T03:07:11Z) - Mundus vult decipi, ergo decipiatur: Visual Communication of Uncertainty
in Election Polls [56.8172499765118]
我々は、今放送と予測におけるバイアスの潜在的な源について論じる。
概念は、誤認識された正確性の問題を軽減するために提示される。
主要なアイデアの1つは、パーティーシェアではなくイベントの確率を使うことである。
論文 参考訳(メタデータ) (2021-04-28T07:02:24Z) - Colorado in Context: Congressional Redistricting and Competing Fairness
Criteria in Colorado [0.0]
我々は、合理的な再分権計画の大きなランダムサンプルを生成し、2018年の州全体の選挙でのリターンを用いて、各地区の党派バランスを決定する。
本研究では, 党派的な成果, 分割される郡数, 計画における競争地区数との関係について検討する。
論文 参考訳(メタデータ) (2020-11-11T20:05:50Z) - Political Geography and Representation: A Case Study of Districting in
Pennsylvania [0.0]
政治地理学によって、パルチザンの競技場がどの程度傾いているかを調べる。
パルチザンニュートラルマップは得票率に比例する議席を与えることは滅多になく、地区のサイズを小さくすることは比例写像を見つけるのをさらに難しくする傾向にある。
論文 参考訳(メタデータ) (2020-10-27T21:01:10Z) - Distribution Matching for Crowd Counting [51.90971145453012]
アノテーションにガウスを付与することは一般化性能を損なうことを示す。
我々は,群集CoUNTing (DM-Count) における分布マッチングの利用を提案する。
平均絶対誤差(Mean Absolute Error)の観点では、DM-Countは従来の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2020-09-28T04:57:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。