SHMC-Net: A Mask-guided Feature Fusion Network for Sperm Head Morphology
Classification
- URL: http://arxiv.org/abs/2402.03697v3
- Date: Tue, 5 Mar 2024 23:55:44 GMT
- Title: SHMC-Net: A Mask-guided Feature Fusion Network for Sperm Head Morphology
Classification
- Authors: Nishchal Sapkota, Yejia Zhang, Sirui Li, Peixian Liang, Zhuo Zhao,
Jingjing Zhang, Xiaomin Zha, Yiru Zhou, Yunxia Cao, Danny Z Chen
- Abstract summary: We propose a new approach for sperm head morphology classification called SHMC-Net.
SHMC-Net uses segmentation masks of sperm heads to guide the morphology classification of sperm images.
We achieve state-of-the-art results on SCIAN and HuSHeM datasets, outperforming methods that use additional pre-training or costly ensembling techniques.
- Score: 14.762439662731865
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Male infertility accounts for about one-third of global infertility cases.
Manual assessment of sperm abnormalities through head morphology analysis
encounters issues of observer variability and diagnostic discrepancies among
experts. Its alternative, Computer-Assisted Semen Analysis (CASA), suffers from
low-quality sperm images, small datasets, and noisy class labels. We propose a
new approach for sperm head morphology classification, called SHMC-Net, which
uses segmentation masks of sperm heads to guide the morphology classification
of sperm images. SHMC-Net generates reliable segmentation masks using image
priors, refines object boundaries with an efficient graph-based method, and
trains an image network with sperm head crops and a mask network with the
corresponding masks. In the intermediate stages of the networks, image and mask
features are fused with a fusion scheme to better learn morphological features.
To handle noisy class labels and regularize training on small datasets,
SHMC-Net applies Soft Mixup to combine mixup augmentation and a loss function.
We achieve state-of-the-art results on SCIAN and HuSHeM datasets, outperforming
methods that use additional pre-training or costly ensembling techniques.
Related papers
- Generative Medical Segmentation [5.4613210257624605]
Generative Medical (GMS) is a novel approach leveraging a generative model to perform image segmentation.
GMS employs a robust pre-trained vision foundation model to extract latent representations for images and corresponding ground truth masks.
The design of GMS leads to fewer trainable parameters in the model which reduces the risk of overfitting and enhances its capability.
arXiv Detail & Related papers (2024-03-27T02:16:04Z) - Disruptive Autoencoders: Leveraging Low-level features for 3D Medical
Image Pre-training [51.16994853817024]
This work focuses on designing an effective pre-training framework for 3D radiology images.
We introduce Disruptive Autoencoders, a pre-training framework that attempts to reconstruct the original image from disruptions created by a combination of local masking and low-level perturbations.
The proposed pre-training framework is tested across multiple downstream tasks and achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-07-31T17:59:42Z) - Unsupervised Anomaly Detection in Medical Images Using Masked Diffusion
Model [7.116982044576858]
Masked Image Modeling (MIM) and Masked Frequency Modeling (MFM) in our self-supervised approach that enables models to learn visual representations from unlabeled data.
We evaluate our approach on datasets containing tumors and numerous sclerosis lesions.
arXiv Detail & Related papers (2023-05-31T14:04:11Z) - Adaptive Face Recognition Using Adversarial Information Network [57.29464116557734]
Face recognition models often degenerate when training data are different from testing data.
We propose a novel adversarial information network (AIN) to address it.
arXiv Detail & Related papers (2023-05-23T02:14:11Z) - Optimizations of Autoencoders for Analysis and Classification of
Microscopic In Situ Hybridization Images [68.8204255655161]
We propose a deep-learning framework to detect and classify areas of microscopic images with similar levels of gene expression.
The data we analyze requires an unsupervised learning model for which we employ a type of Artificial Neural Network - Deep Learning Autoencoders.
arXiv Detail & Related papers (2023-04-19T13:45:28Z) - HybridMIM: A Hybrid Masked Image Modeling Framework for 3D Medical Image
Segmentation [29.15746532186427]
HybridMIM is a novel hybrid self-supervised learning method based on masked image modeling for 3D medical image segmentation.
We learn the semantic information of medical images at three levels, including:1) partial region prediction to reconstruct key contents of the 3D image, which largely reduces the pre-training time burden.
The proposed framework is versatile to support both CNN and transformer as encoder backbones, and also enables to pre-train decoders for image segmentation.
arXiv Detail & Related papers (2023-03-18T04:43:12Z) - Online Easy Example Mining for Weakly-supervised Gland Segmentation from
Histology Images [10.832913704956253]
Developing an AI-assisted gland segmentation method from histology images is critical for automatic cancer diagnosis and prognosis.
Existing weakly-supervised semantic segmentation methods in computer vision achieve degenerative results for gland segmentation.
We propose a novel method Online Easy Example Mining (OEEM) that encourages the network to focus on credible supervision signals.
arXiv Detail & Related papers (2022-06-14T07:53:03Z) - Improving Human Sperm Head Morphology Classification with Unsupervised
Anatomical Feature Distillation [3.666202958045386]
Recent deep learning (DL) morphology analysis methods achieve promising benchmark results, but leave performance and robustness on the table.
We introduce a new DL training framework that leverages anatomical and image priors from human sperm microscopy crops to extract useful features without additional labeling cost.
We evaluate our new approach on two public sperm datasets and achieve state-of-the-art performances.
arXiv Detail & Related papers (2022-02-15T04:58:29Z) - Pairwise Relation Learning for Semi-supervised Gland Segmentation [90.45303394358493]
We propose a pairwise relation-based semi-supervised (PRS2) model for gland segmentation on histology images.
This model consists of a segmentation network (S-Net) and a pairwise relation network (PR-Net)
We evaluate our model against five recent methods on the GlaS dataset and three recent methods on the CRAG dataset.
arXiv Detail & Related papers (2020-08-06T15:02:38Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
Retinopathy of Prematurity (ROP) is an eye disorder primarily affecting premature infants with lower weights.
It causes proliferation of vessels in the retina and could result in vision loss and, eventually, retinal detachment, leading to blindness.
In recent years, there has been a significant effort to automate the diagnosis using deep learning.
This paper builds upon the success of previous models and develops a novel architecture, which combines object segmentation and convolutional neural networks (CNN)
Our proposed system first trains an object segmentation model to identify the demarcation line at a pixel level and adds the resulting mask as an additional "color" channel in
arXiv Detail & Related papers (2020-04-03T14:07:41Z) - Panoptic Feature Fusion Net: A Novel Instance Segmentation Paradigm for
Biomedical and Biological Images [91.41909587856104]
We present a Panoptic Feature Fusion Net (PFFNet) that unifies the semantic and instance features in this work.
Our proposed PFFNet contains a residual attention feature fusion mechanism to incorporate the instance prediction with the semantic features.
It outperforms several state-of-the-art methods on various biomedical and biological datasets.
arXiv Detail & Related papers (2020-02-15T09:19:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.