論文の概要: Asymptotic generalization error of a single-layer graph convolutional network
- arxiv url: http://arxiv.org/abs/2402.03818v2
- Date: Wed, 20 Mar 2024 15:08:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-21 21:38:31.084265
- Title: Asymptotic generalization error of a single-layer graph convolutional network
- Title(参考訳): 単層グラフ畳み込みネットワークの漸近一般化誤差
- Authors: O. Duranthon, L. Zdeborová,
- Abstract要約: 属性ブロックモデルにより生成されたデータに基づいて学習した単一層グラフ畳み込みネットワークの性能を予測する。
我々は,高信号対雑音比の限界について検討し,GCNの収束率を詳細に検討し,一貫性はあるものの,いずれの場合においてもベイズ最適値に達しないことを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: While graph convolutional networks show great practical promises, the theoretical understanding of their generalization properties as a function of the number of samples is still in its infancy compared to the more broadly studied case of supervised fully connected neural networks. In this article, we predict the performances of a single-layer graph convolutional network (GCN) trained on data produced by attributed stochastic block models (SBMs) in the high-dimensional limit. Previously, only ridge regression on contextual-SBM (CSBM) has been considered in Shi et al. 2022; we generalize the analysis to arbitrary convex loss and regularization for the CSBM and add the analysis for another data model, the neural-prior SBM. We also study the high signal-to-noise ratio limit, detail the convergence rates of the GCN and show that, while consistent, it does not reach the Bayes-optimal rate for any of the considered cases.
- Abstract(参考訳): グラフ畳み込みネットワークは、非常に実用的な可能性を示しているが、それらの一般化特性を、教師付き完全連結ニューラルネットワークのより広範に研究されている場合と比較して、標本数の関数としての理論的理解はまだ初期段階にある。
本稿では,一層グラフ畳み込みネットワーク(GCN)の性能を,属性付き確率ブロックモデル(SBM)が高次元限界で生成したデータに基づいて予測する。
従来,SBM(文脈的SBM)の隆起回帰はShi et al 2022においてのみ検討されており,CSBMの任意の凸損失と正規化に対して解析を一般化し,他のデータモデルであるニューラルプライアSBMに解析を加える。
また,高信号対雑音比の限界について検討し,GCNの収束率を詳細に検討し,一貫性はあるものの,いずれの場合においてもベイズ最適値に達しないことを示す。
関連論文リスト
- Generalization of Geometric Graph Neural Networks [84.01980526069075]
幾何グラフニューラルネットワーク(GNN)の一般化能力について検討する。
我々は,このGNNの最適経験リスクと最適統計リスクとの一般化ギャップを証明した。
最も重要な観察は、前の結果のようにグラフのサイズに制限されるのではなく、1つの大きなグラフで一般化能力を実現することができることである。
論文 参考訳(メタデータ) (2024-09-08T18:55:57Z) - Generalization of Graph Neural Networks is Robust to Model Mismatch [84.01980526069075]
グラフニューラルネットワーク(GNN)は、その一般化能力によってサポートされている様々なタスクにおいて、その効果を実証している。
本稿では,多様体モデルから生成される幾何グラフで動作するGNNについて検討する。
本稿では,そのようなモデルミスマッチの存在下でのGNN一般化の堅牢性を明らかにする。
論文 参考訳(メタデータ) (2024-08-25T16:00:44Z) - Generalization Error of Graph Neural Networks in the Mean-field Regime [10.35214360391282]
グラフ畳み込みニューラルネットワークとメッセージパッシンググラフニューラルネットワークという,広く利用されている2種類のグラフニューラルネットワークについて検討する。
我々の新しいアプローチは、これらのグラフニューラルネットワークの一般化誤差を評価する平均場内上限を導出することである。
論文 参考訳(メタデータ) (2024-02-10T19:12:31Z) - Joint Edge-Model Sparse Learning is Provably Efficient for Graph Neural
Networks [89.28881869440433]
本稿では,グラフニューラルネットワーク(GNN)における結合エッジモデルスパース学習の理論的特徴について述べる。
解析学的には、重要なノードをサンプリングし、最小のマグニチュードでプルーニングニューロンをサンプリングすることで、サンプルの複雑さを減らし、テスト精度を損なうことなく収束を改善することができる。
論文 参考訳(メタデータ) (2023-02-06T16:54:20Z) - Stability and Generalization Analysis of Gradient Methods for Shallow
Neural Networks [59.142826407441106]
本稿では,アルゴリズム安定性の概念を活用して,浅層ニューラルネットワーク(SNN)の一般化挙動について検討する。
我々は、SNNを訓練するために勾配降下(GD)と勾配降下(SGD)を考慮する。
論文 参考訳(メタデータ) (2022-09-19T18:48:00Z) - Generalization Guarantee of Training Graph Convolutional Networks with
Graph Topology Sampling [83.77955213766896]
グラフ畳み込みネットワーク(GCN)は近年,グラフ構造化データの学習において大きな成功を収めている。
スケーラビリティ問題に対処するため、Gsの学習におけるメモリと計算コストを削減するため、グラフトポロジサンプリングが提案されている。
本稿では,3層GCNのトレーニング(最大)におけるグラフトポロジサンプリングの最初の理論的正当性について述べる。
論文 参考訳(メタデータ) (2022-07-07T21:25:55Z) - Heavy-Tail Phenomenon in Decentralized SGD [33.63000461985398]
分散勾配降下(DE-SGD)における重鎖の出現について検討する。
また,分権化が尾の挙動に及ぼす影響についても検討した。
我々の理論は、テールとネットワーク構造の間の興味深い相互作用を明らかにする。
論文 参考訳(メタデータ) (2022-05-13T14:47:04Z) - Predicting the generalization gap in neural networks using topological
data analysis [33.511371257571504]
トポロジカルデータ解析の手法を用いて,ニューラルネットワークの一般化ギャップについて検討する。
トレーニング後のニューロン活性化相関から構築した重み付きグラフのホモロジー永続図を計算する。
持続性図から異なる数値要約の有用性を比較し、それらの組み合わせによって、テストセットを必要とせずに、その一般化ギャップを正確に予測し、部分的に説明できることを示す。
論文 参考訳(メタデータ) (2022-03-23T11:15:36Z) - Crime Prediction with Graph Neural Networks and Multivariate Normal
Distributions [18.640610803366876]
グラフ畳み込みネットワーク(GCN)のフレキシブルな構造を利用して,高分解能領域における疎結合問題に取り組む。
グラフ畳み込みGated Recurrent Units (Graph-ConvGRU) を用いてモデルを構築し,空間的・時間的・カテゴリー的関係を学習する。
モデルが生成性だけでなく,正確性も示しています。
論文 参考訳(メタデータ) (2021-11-29T17:37:01Z) - The Heavy-Tail Phenomenon in SGD [7.366405857677226]
最小損失のHessianの構造に依存すると、SGDの反復はエンフェビーテールの定常分布に収束する。
深層学習におけるSGDの行動に関する知見に分析結果を変換する。
論文 参考訳(メタデータ) (2020-06-08T16:43:56Z) - Infinitely Wide Graph Convolutional Networks: Semi-supervised Learning
via Gaussian Processes [144.6048446370369]
グラフ畳み込みニューラルネットワーク(GCN)は近年,グラフに基づく半教師付き半教師付き分類において有望な結果を示した。
グラフに基づく半教師付き学習のためのGCN(GPGC)を用いたGP回帰モデルを提案する。
GPGCを評価するための広範囲な実験を行い、他の最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-02-26T10:02:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。