論文の概要: Prediction Horizon Requirements for Automated Driving: Optimizing Safety, Comfort, and Efficiency
- arxiv url: http://arxiv.org/abs/2402.03893v2
- Date: Wed, 10 Apr 2024 13:34:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-11 18:56:10.823406
- Title: Prediction Horizon Requirements for Automated Driving: Optimizing Safety, Comfort, and Efficiency
- Title(参考訳): 自動運転のための予測水平条件:安全・快適・効率の最適化
- Authors: Manuel Muñoz Sánchez, Chris van der Ploeg, Robin Smit, Jos Elfring, Emilia Silvas, René van de Molengraft,
- Abstract要約: 本稿では,特定のAV性能基準とアプリケーションニーズに基づいて,必要最小限および最適予測地平線を規定するフレームワークを提案する。
その結果,横断歩道との衝突を防ぐために1.6秒までの地平線が必要であり,最大7~8秒の地平線が最適効率を実現し,最大15秒までの地平線が乗客の快適性を向上させることが示唆された。
提案手法は,歩行者を横断するアプリケーションのための一般的なガイドラインとして,11.8秒の予測地平線を目標とすることを推奨する。
- 参考スコア(独自算出の注目度): 1.979158763744267
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predicting the movement of other road users is beneficial for improving automated vehicle (AV) performance. However, the relationship between the time horizon associated with these predictions and AV performance remains unclear. Despite the existence of numerous trajectory prediction algorithms, no studies have been conducted on how varying prediction lengths affect AV safety and other vehicle performance metrics, resulting in undefined horizon requirements for prediction methods. Our study addresses this gap by examining the effects of different prediction horizons on AV performance, focusing on safety, comfort, and efficiency. Through multiple experiments using a state-of-the-art, risk-based predictive trajectory planner, we simulated predictions with horizons up to 20 seconds. Based on our simulations, we propose a framework for specifying the minimum required and optimal prediction horizons based on specific AV performance criteria and application needs. Our results indicate that a horizon of 1.6 seconds is required to prevent collisions with crossing pedestrians, horizons of 7-8 seconds yield the best efficiency, and horizons up to 15 seconds improve passenger comfort. We conclude that prediction horizon requirements are application-dependent, and recommend aiming for a prediction horizon of 11.8 seconds as a general guideline for applications involving crossing pedestrians.
- Abstract(参考訳): 他の道路利用者の移動を予測することは、自動走行車(AV)の性能を改善する上で有益である。
しかし,これらの予測とAV性能との関係は明らかでない。
多くの軌道予測アルゴリズムが存在するにもかかわらず、様々な予測長がAV安全やその他の車両性能指標にどのように影響するかは研究されていない。
本研究は, 安全性, 快適性, 効率性に着目し, 異なる予測地平線がAV性能に及ぼす影響を検討することによって, このギャップに対処する。
最新のリスクベースの予測軌道プランナを用いて複数の実験を行い、最大20秒間予測をシミュレーションした。
シミュレーションに基づいて、特定のAV性能基準とアプリケーションニーズに基づいて、必要最小限かつ最適予測地平線を特定するためのフレームワークを提案する。
その結果,横断歩道との衝突を防ぐために1.6秒までの地平線が必要であり,最大7~8秒の地平線が最適効率を実現し,最大15秒までの地平線が乗客の快適性を向上させることが示唆された。
提案手法は,歩行者を横断するアプリケーションのための一般的なガイドラインとして,11.8秒の予測地平線を目標とすることを推奨する。
関連論文リスト
- Uncertainty-Aware DRL for Autonomous Vehicle Crowd Navigation in Shared Space [3.487370856323828]
本研究は,モデルフリーDRLアルゴリズムのトレーニングにおいて,予測歩行者状態の不確かさを取り入れた統合予測と計画手法を導入する。
新たな報酬関数により、AVは歩行者の個人的な空間を尊重し、接近中の速度を減少させ、予測された経路との衝突確率を最小化する。
その結果, 衝突速度は40%減少し, 予測の不確実性を考慮しない技術モデルと比較すると, 歩行者との距離は15%増加した。
論文 参考訳(メタデータ) (2024-05-22T20:09:21Z) - A Novel Deep Neural Network for Trajectory Prediction in Automated
Vehicles Using Velocity Vector Field [12.067838086415833]
本稿では,データ駆動学習に基づく手法と,自然に着想を得た概念から生成された速度ベクトル場(VVF)を組み合わせた軌道予測手法を提案する。
精度は、正確な軌道予測のための過去の観測の長い歴史の要求を緩和する観測窓の減少と一致している。
論文 参考訳(メタデータ) (2023-09-19T22:14:52Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
自動運転車(SDV)は、周囲を認識でき、他の交通参加者の将来の行動を予測できなければならない。
既存の作業は、検出されたオブジェクトの軌跡が続くオブジェクト検出を実行するか、シーン全体の密度の高い占有とフローグリッドを予測するかのいずれかである。
これは、認識と将来の予測に対する統一されたアプローチを動機付け、単一のニューラルネットワークで時間とともに占有とフローを暗黙的に表現します。
論文 参考訳(メタデータ) (2023-08-02T23:39:24Z) - Trajectory Prediction with Observations of Variable-Length for Motion
Planning in Highway Merging scenarios [5.193470362635256]
既存の手法では、2秒以上の一定期間の観測がなければ、車両の予測を開始することはできない。
本稿では,1フレーム以上の観測長を扱うために特別に訓練されたトランスフォーマーを用いた軌道予測手法を提案する。
2つの大規模高速道路軌道データセットを用いて提案手法の総合評価を行う。
論文 参考訳(メタデータ) (2023-06-08T18:03:48Z) - AdvDO: Realistic Adversarial Attacks for Trajectory Prediction [87.96767885419423]
軌道予測は、自動運転車が正しく安全な運転行動を計画するために不可欠である。
我々は,現実的な対向軌道を生成するために,最適化に基づく対向攻撃フレームワークを考案する。
私たちの攻撃は、AVが道路を走り去るか、シミュレーション中に他の車両に衝突する可能性がある。
論文 参考訳(メタデータ) (2022-09-19T03:34:59Z) - Video action recognition for lane-change classification and prediction
of surrounding vehicles [12.127050913280925]
レーン変更認識と予測タスクは、ビデオアクション認識問題として提示される。
コンテキストと観測地平線がパフォーマンスに与える影響を調査し、異なる予測地平線を分析します。
その結果,これらの手法が将来の車両の車線変化を予測できる可能性を明らかにした。
論文 参考訳(メタデータ) (2021-01-13T13:25:00Z) - Safety-Oriented Pedestrian Motion and Scene Occupancy Forecasting [91.69900691029908]
我々は、個々の動きとシーン占有マップの両方を予測することを提唱する。
歩行者の相対的な空間情報を保存するScene-Actor Graph Neural Network (SA-GNN)を提案する。
2つの大規模な実世界のデータセットで、我々のシーン占有率予測が最先端のモーション予測手法よりも正確でより校正されていることを示した。
論文 参考訳(メタデータ) (2021-01-07T06:08:21Z) - Pedestrian Behavior Prediction for Automated Driving: Requirements,
Metrics, and Relevant Features [1.1888947789336193]
システムレベルアプローチによる自動走行の歩行者行動予測の要件を分析した。
人間の運転行動に基づいて、自動走行車の適切な反応パターンを導出する。
複数の文脈的手がかりを組み込んだ変分条件自動エンコーダに基づく歩行者予測モデルを提案する。
論文 参考訳(メタデータ) (2020-12-15T16:52:49Z) - What-If Motion Prediction for Autonomous Driving [58.338520347197765]
生存可能なソリューションは、道路レーンのような静的な幾何学的文脈と、複数のアクターから生じる動的な社会的相互作用の両方を考慮しなければならない。
本稿では,解釈可能な幾何学的(アクター・レーン)と社会的(アクター・アクター)の関係を持つグラフに基づく注意的アプローチを提案する。
提案モデルでは,道路レーンやマルチアクターの相互作用を仮定的に,あるいは「何」かで予測できる。
論文 参考訳(メタデータ) (2020-08-24T17:49:30Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
道路にはよく定義された地形、地形、交通規則がある。
本稿では,構造的事前を損失関数として組み込むことを提案する。
実世界の自動運転データセットにおけるアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2020-06-04T03:56:11Z) - TPNet: Trajectory Proposal Network for Motion Prediction [81.28716372763128]
Trajectory Proposal Network (TPNet) は、新しい2段階の動作予測フレームワークである。
TPNetはまず、仮説の提案として将来の軌道の候補セットを生成し、次に提案の分類と修正によって最終的な予測を行う。
4つの大規模軌道予測データセットの実験は、TPNetが定量的かつ定性的に、最先端の結果を達成することを示した。
論文 参考訳(メタデータ) (2020-04-26T00:01:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。