Embedding Large Language Models into Extended Reality: Opportunities and Challenges for Inclusion, Engagement, and Privacy
- URL: http://arxiv.org/abs/2402.03907v2
- Date: Thu, 20 Jun 2024 10:02:30 GMT
- Title: Embedding Large Language Models into Extended Reality: Opportunities and Challenges for Inclusion, Engagement, and Privacy
- Authors: Efe Bozkir, Süleyman Özdel, Ka Hei Carrie Lau, Mengdi Wang, Hong Gao, Enkelejda Kasneci,
- Abstract summary: We argue for using large language models in XR by embedding them in avatars or as narratives to facilitate inclusion.
We speculate that combining the information provided to LLM-powered spaces by users and the biometric data obtained might lead to novel privacy invasions.
- Score: 37.061999275101904
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Advances in artificial intelligence and human-computer interaction will likely lead to extended reality (XR) becoming pervasive. While XR can provide users with interactive, engaging, and immersive experiences, non-player characters are often utilized in pre-scripted and conventional ways. This paper argues for using large language models (LLMs) in XR by embedding them in avatars or as narratives to facilitate inclusion through prompt engineering and fine-tuning the LLMs. We argue that this inclusion will promote diversity for XR use. Furthermore, the versatile conversational capabilities of LLMs will likely increase engagement in XR, helping XR become ubiquitous. Lastly, we speculate that combining the information provided to LLM-powered spaces by users and the biometric data obtained might lead to novel privacy invasions. While exploring potential privacy breaches, examining user privacy concerns and preferences is also essential. Therefore, despite challenges, LLM-powered XR is a promising area with several opportunities.
Related papers
- CUIfy the XR: An Open-Source Package to Embed LLM-powered Conversational Agents in XR [31.49021749468963]
Large language model (LLM)powered non-player characters (NPCs) with speech-to-text (STT) and text-to-speech (TTS) models bring significant advantages over conventional or pre-scripted NPCs for facilitating more natural conversational user interfaces (CUIs) in XR.
We provide the community with an open-source, customizable, and privacy-aware Unity package, CUIfy, that facilitates speech-based NPC-user interaction with various LLMs, STT, and TTS models.
arXiv Detail & Related papers (2024-11-07T12:55:17Z) - LLM-ESR: Large Language Models Enhancement for Long-tailed Sequential Recommendation [58.04939553630209]
In real-world systems, most users interact with only a handful of items, while the majority of items are seldom consumed.
These two issues, known as the long-tail user and long-tail item challenges, often pose difficulties for existing Sequential Recommendation systems.
We propose the Large Language Models Enhancement framework for Sequential Recommendation (LLM-ESR) to address these challenges.
arXiv Detail & Related papers (2024-05-31T07:24:42Z) - Autonomous Workflow for Multimodal Fine-Grained Training Assistants Towards Mixed Reality [28.27036270001756]
This work designs an autonomous workflow tailored for integrating AI agents seamlessly into extended reality (XR) applications for fine-grained training.
We present a demonstration of a multimodal fine-grained training assistant for LEGO brick assembly in a pilot XR environment.
arXiv Detail & Related papers (2024-05-16T14:20:30Z) - Rethinking Interpretability in the Era of Large Language Models [76.1947554386879]
Large language models (LLMs) have demonstrated remarkable capabilities across a wide array of tasks.
The capability to explain in natural language allows LLMs to expand the scale and complexity of patterns that can be given to a human.
These new capabilities raise new challenges, such as hallucinated explanations and immense computational costs.
arXiv Detail & Related papers (2024-01-30T17:38:54Z) - LMRL Gym: Benchmarks for Multi-Turn Reinforcement Learning with Language
Models [56.25156596019168]
This paper introduces the LMRL-Gym benchmark for evaluating multi-turn RL for large language models (LLMs)
Our benchmark consists of 8 different language tasks, which require multiple rounds of language interaction and cover a range of tasks in open-ended dialogue and text games.
arXiv Detail & Related papers (2023-11-30T03:59:31Z) - Can LLMs Keep a Secret? Testing Privacy Implications of Language Models via Contextual Integrity Theory [82.7042006247124]
We show that even the most capable AI models reveal private information in contexts that humans would not, 39% and 57% of the time, respectively.
Our work underscores the immediate need to explore novel inference-time privacy-preserving approaches, based on reasoning and theory of mind.
arXiv Detail & Related papers (2023-10-27T04:15:30Z) - Beyond Memorization: Violating Privacy Via Inference with Large Language Models [2.9373912230684565]
We present the first comprehensive study on the capabilities of pretrained language models to infer personal attributes from text.
Our findings highlight that current LLMs can infer personal data at a previously unattainable scale.
arXiv Detail & Related papers (2023-10-11T08:32:46Z) - RRAML: Reinforced Retrieval Augmented Machine Learning [10.94680155282906]
We propose a novel framework called Reinforced Retrieval Augmented Machine Learning (RRAML)
RRAML integrates the reasoning capabilities of large language models with supporting information retrieved by a purpose-built retriever from a vast user-provided database.
We believe that the research agenda outlined in this paper has the potential to profoundly impact the field of AI.
arXiv Detail & Related papers (2023-07-24T13:51:19Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
Large language models (LLMs) are able to generate human-like, fluent responses for many downstream tasks.
This paper proposes a LLM-Augmenter system, which augments a black-box LLM with a set of plug-and-play modules.
arXiv Detail & Related papers (2023-02-24T18:48:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.