論文の概要: FPGA Deployment of LFADS for Real-time Neuroscience Experiments
- arxiv url: http://arxiv.org/abs/2402.04274v1
- Date: Fri, 2 Feb 2024 07:52:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-11 15:29:38.451551
- Title: FPGA Deployment of LFADS for Real-time Neuroscience Experiments
- Title(参考訳): LFADSのFPGAによるリアルタイム神経科学実験
- Authors: Xiaohan Liu, ChiJui Chen, YanLun Huang, LingChi Yang, Elham E Khoda,
Yihui Chen, Scott Hauck, Shih-Chieh Hsu, Bo-Cheng Lai
- Abstract要約: LFADS(Latent Factor Analysis via Dynamical Systems)は、1回の試験で同時に記録された高次元神経スパイデータから潜時ダイナミクスを推定するためのディープラーニング手法である。
本研究では,LFADSモデルをFPGA(Field Programmable Gate Arrays)に実装する。
我々の実装では、Xilinx U55Cで1回の試行でデータを処理するために41.97$mu$sの推論遅延を示す。
- 参考スコア(独自算出の注目度): 2.1110034280282153
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large-scale recordings of neural activity are providing new opportunities to
study neural population dynamics. A powerful method for analyzing such
high-dimensional measurements is to deploy an algorithm to learn the
low-dimensional latent dynamics. LFADS (Latent Factor Analysis via Dynamical
Systems) is a deep learning method for inferring latent dynamics from
high-dimensional neural spiking data recorded simultaneously in single trials.
This method has shown a remarkable performance in modeling complex brain
signals with an average inference latency in milliseconds. As our capacity of
simultaneously recording many neurons is increasing exponentially, it is
becoming crucial to build capacity for deploying low-latency inference of the
computing algorithms. To improve the real-time processing ability of LFADS, we
introduce an efficient implementation of the LFADS models onto Field
Programmable Gate Arrays (FPGA). Our implementation shows an inference latency
of 41.97 $\mu$s for processing the data in a single trial on a Xilinx U55C.
- Abstract(参考訳): 神経活動の大規模記録は、神経集団の動態を研究する新しい機会を提供している。
このような高次元計測を分析するための強力な方法は、低次元潜在力学を学ぶアルゴリズムをデプロイすることである。
lfads(latent factor analysis via dynamical systems)は、単一の実験で同時に記録された高次元神経スパイクデータから潜時ダイナミクスを推測するディープラーニング手法である。
この手法は、数ミリ秒で平均的な推論遅延を持つ複雑な脳信号のモデリングにおいて顕著な性能を示した。
多くのニューロンを同時に記録する能力は指数関数的に増加しており、計算アルゴリズムの低レイテンシ推論をデプロイする能力を構築することが重要である。
LFADSのリアルタイム処理能力を向上させるために,フィールドプログラマブルゲートアレイ(FPGA)にLFADSモデルの効率的な実装を導入する。
我々の実装では、Xilinx U55Cで1回の試行でデータを処理するために41.97$\mu$sの推論遅延を示す。
関連論文リスト
- TESS: A Scalable Temporally and Spatially Local Learning Rule for Spiking Neural Networks [6.805933498669221]
リソース制約のあるデバイス上でのニューラルネットワーク(SNN)のトレーニングは、高い計算とメモリ要求のため、依然として困難である。
本稿では,SNNの学習のための時間的・空間的学習ルールであるTESSを紹介する。
本手法は,各ニューロン内の局所的な信号にのみ依存することにより,時間的および空間的クレジット割り当てに対処する。
論文 参考訳(メタデータ) (2025-02-03T21:23:15Z) - Channel-wise Parallelizable Spiking Neuron with Multiplication-free Dynamics and Large Temporal Receptive Fields [32.349167886062105]
スパイキングニューラルネットワーク(SNN)は、生物学的ニューラルネットワークにインスパイアされた洗練された神経力学とスパースバイナリアクティベーション(スパイクス)によって、ニューラルネットワーク(ANN)と区別される。
従来のニューロンモデルは反復的なステップバイステップのダイナミクスを使用し、シリアル計算とSNNの遅いトレーニング速度をもたらす。
最近の並列化可能なスパイクニューロンモデルは、SNNの訓練を加速するために、グラフィックス処理ユニットの大規模並列計算能力をフル活用するために提案されている。
論文 参考訳(メタデータ) (2025-01-24T13:44:08Z) - Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
本稿では,高精度かつエネルギー効率の高い単発多次元高調波検索のための変換に基づくニューロモルフィックアルゴリズムの可能性について検討する。
複雑な値の畳み込み層と活性化をスパイクニューラルネットワーク(SNN)に変換する新しい手法を開発した。
変換されたSNNは、元のCNNに比べて性能が低下し、ほぼ5倍の電力効率を実現している。
論文 参考訳(メタデータ) (2024-12-05T09:41:33Z) - ResFields: Residual Neural Fields for Spatiotemporal Signals [61.44420761752655]
ResFieldsは、複雑な時間的信号を効果的に表現するために設計された新しいネットワークのクラスである。
本稿では,ResFieldの特性を包括的に解析し,トレーニング可能なパラメータの数を減らすための行列分解手法を提案する。
スパースRGBDカメラからダイナミックな3Dシーンをキャプチャする効果を示すことで,ResFieldsの実用性を実証する。
論文 参考訳(メタデータ) (2023-09-06T16:59:36Z) - The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks [64.08042492426992]
本稿では,脳皮質ニューロンの生物学的モデルであるExpressive Memory(ELM)ニューロンモデルを紹介する。
ELMニューロンは、上記の入力-出力関係を1万以下のトレーニング可能なパラメータと正確に一致させることができる。
本稿では,Long Range Arena(LRA)データセットなど,時間構造を必要とするタスクで評価する。
論文 参考訳(メタデータ) (2023-06-14T13:34:13Z) - Deep inference of latent dynamics with spatio-temporal super-resolution
using selective backpropagation through time [15.648009434801885]
現代の神経インタフェースは、脳回路内の100万のニューロンの活動をアクセスすることができる。
帯域幅制限はしばしば、より大きな空間サンプリング(より多くのチャンネルやピクセル)と時間サンプリングの頻度の間のトレードオフを生み出す。
ここでは、ニューロン間の関係を利用して、ニューロン時系列における超解像を得ることが可能であることを実証する。
論文 参考訳(メタデータ) (2021-10-29T20:18:29Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - Recurrent Neural Network Learning of Performance and Intrinsic
Population Dynamics from Sparse Neural Data [77.92736596690297]
本稿では,RNNの入出力動作だけでなく,内部ネットワークのダイナミクスも学習できる新しいトレーニング戦略を提案する。
提案手法は、RNNを訓練し、生理学的にインスパイアされた神経モデルの内部ダイナミクスと出力信号を同時に再現する。
注目すべきは、トレーニングアルゴリズムがニューロンの小さなサブセットの活性に依存する場合であっても、内部動力学の再現が成功することである。
論文 参考訳(メタデータ) (2020-05-05T14:16:54Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z) - A Supervised Learning Algorithm for Multilayer Spiking Neural Networks
Based on Temporal Coding Toward Energy-Efficient VLSI Processor Design [2.6872737601772956]
スパイキングニューラルネットワーク(スパイキングニューラルネット、英: Spiking Neural Network、SNN)は、スパイクの形で情報を処理できる脳にインスパイアされた数学的モデルである。
時間符号化に基づくSNNのための新しい教師付き学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-01-08T03:37:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。