論文の概要: AI language models as role-playing tools, not human participants
- arxiv url: http://arxiv.org/abs/2402.04470v1
- Date: Tue, 6 Feb 2024 23:28:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-08 17:31:55.640424
- Title: AI language models as role-playing tools, not human participants
- Title(参考訳): 人間ではなく、ロールプレイングツールとしてのAI言語モデル
- Authors: Zhicheng Lin
- Abstract要約: 我々は、言語モデルを平均的な人間の心を垣間見るものとして扱うことは、これらの統計アルゴリズムを根本的に誤解すると主張している。
言語モデルはフレキシブルなシミュレーションツールとして受け入れられるべきであり、人間の特性自体を持たずに多様な振る舞いを模倣することができる、と我々は主張する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Advances in AI invite misuse of language models as replacements for human
participants. We argue that treating their responses as glimpses into an
average human mind fundamentally mischaracterizes these statistical algorithms
and that language models should be embraced as flexible simulation tools, able
to mimic diverse behaviors without possessing human traits themselves.
- Abstract(参考訳): AIの進歩は、人間の参加者の代替として言語モデルの誤用を招いている。
平均的な人間の心を垣間見るものとして、これらの統計アルゴリズムを根本的に誤認識し、言語モデルは柔軟なシミュレーションツールとして受け入れるべきであり、人間の特性自体を持たずに多様な振る舞いを模倣できると主張している。
関連論文リスト
- Large Language Models as Neurolinguistic Subjects: Identifying Internal Representations for Form and Meaning [49.60849499134362]
本研究では,大言語モデル(LLM)の記号化(形式)および記号化(意味)に関する言語的理解について検討する。
伝統的な精神言語学的評価は、しばしばLSMの真の言語能力を誤って表現する統計バイアスを反映している。
ミニマルペアと診断プローブを組み合わせてモデル層間のアクティベーションパターンを解析する新しい手法を用いて,ニューロ言語学的アプローチを提案する。
論文 参考訳(メタデータ) (2024-11-12T04:16:44Z) - Cross-lingual Speech Emotion Recognition: Humans vs. Self-Supervised Models [16.0617753653454]
本研究では,人間のパフォーマンスとSSLモデルの比較分析を行った。
また、モデルと人間のSER能力を発話レベルとセグメントレベルの両方で比較する。
その結果,適切な知識伝達を行うモデルでは,対象言語に適応し,ネイティブ話者に匹敵する性能が得られることがわかった。
論文 参考訳(メタデータ) (2024-09-25T13:27:17Z) - Theoretical and Methodological Framework for Studying Texts Produced by Large Language Models [0.0]
本稿では,大規模言語モデル(LLM)の研究における概念的,方法論的,技術的課題について述べる。
LLMを基質とし、モデルがシミュレートするエンティティを区別する理論的な枠組みの上に構築されている。
論文 参考訳(メタデータ) (2024-08-29T17:34:10Z) - PersLLM: A Personified Training Approach for Large Language Models [66.16513246245401]
社会実践, 一貫性, 動的発達という, 心理学に根ざした個性の原則を統合したPersLLMを提案する。
モデルパラメータに直接パーソナリティ特性を組み込み、誘導に対するモデルの抵抗性を高め、一貫性を高め、パーソナリティの動的進化を支援する。
論文 参考訳(メタデータ) (2024-07-17T08:13:22Z) - Human-like object concept representations emerge naturally in multimodal large language models [24.003766123531545]
大規模言語モデルにおける対象概念の表現が人間とどのように関連しているかを明らかにするために,行動解析と神経画像解析を併用した。
その結果,66次元の埋め込みは非常に安定で予測的であり,人間の心的表現に類似したセマンティッククラスタリングが認められた。
本研究は、機械知能の理解を深め、より人間的な人工知能システムの開発を知らせるものである。
論文 参考訳(メタデータ) (2024-07-01T08:17:19Z) - Human Simulacra: Benchmarking the Personification of Large Language Models [38.21708264569801]
大規模言語モデル(LLM)は、人間の知性の側面を忠実に模倣するシステムとして認識されている。
本稿では,仮想キャラクタのライフストーリーをゼロから構築するためのフレームワークを提案する。
実験により, 構築したシミュラクラは, 対象キャラクタと一致した擬人化応答を生成できることが実証された。
論文 参考訳(メタデータ) (2024-02-28T09:11:14Z) - Is Cognition and Action Consistent or Not: Investigating Large Language
Model's Personality [12.162460438332152]
本研究では,人格質問紙に対する回答を通じて,人格特性の証明における言語モデル(LLM)の信頼性について検討した。
我々のゴールは、LLMの人格傾向と実際の「行動」との整合性を評価することである。
本研究では,心理学的理論とメトリクスに基づく観察結果の仮説を提案する。
論文 参考訳(メタデータ) (2024-02-22T16:32:08Z) - Interpreting Pretrained Language Models via Concept Bottlenecks [55.47515772358389]
事前訓練された言語モデル(PLM)は、様々な自然言語処理タスクにおいて大きな進歩を遂げてきた。
ブラックボックスの性質による解釈可能性の欠如は、責任ある実装に課題をもたらす。
本研究では,人間にとって理解しやすい高レベルで有意義な概念を用いて,PLMを解釈する新しい手法を提案する。
論文 参考訳(メタデータ) (2023-11-08T20:41:18Z) - The Neuro-Symbolic Inverse Planning Engine (NIPE): Modeling
Probabilistic Social Inferences from Linguistic Inputs [50.32802502923367]
確率的目標推論領域における言語駆動の過程と社会的推論への影響について検討する。
本稿では,エージェントシナリオの言語入力から目標推定を行うニューロシンボリックモデルを提案する。
我々のモデルは人間の反応パターンと密に一致し、LLM単独の使用よりも人間の判断をより良く予測する。
論文 参考訳(メタデータ) (2023-06-25T19:38:01Z) - From Word Models to World Models: Translating from Natural Language to
the Probabilistic Language of Thought [124.40905824051079]
言語インフォームド・シンキングのための計算フレームワークである「構成」を合理的に提案する。
我々は、自然言語から確率論的思考言語への文脈感応的なマッピングとして、言語の意味を定式化する。
LLMは、現実的に適切な言語的意味をキャプチャする文脈依存翻訳を生成することができることを示す。
認知的なモチベーションを持つシンボリックモジュールを統合するために、我々のフレームワークを拡張します。
論文 参考訳(メタデータ) (2023-06-22T05:14:00Z) - Machine Psychology [54.287802134327485]
我々は、心理学にインスパイアされた行動実験において、研究のための実りある方向が、大きな言語モデルに係わっていると論じる。
本稿では,本手法が表に示す理論的視点,実験パラダイム,計算解析技術について述べる。
これは、パフォーマンスベンチマークを超えた、生成人工知能(AI)のための「機械心理学」の道を開くものだ。
論文 参考訳(メタデータ) (2023-03-24T13:24:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。