論文の概要: Six Fallacies in Substituting Large Language Models for Human Participants
- arxiv url: http://arxiv.org/abs/2402.04470v5
- Date: Fri, 20 Jun 2025 02:50:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-23 14:57:50.596423
- Title: Six Fallacies in Substituting Large Language Models for Human Participants
- Title(参考訳): ヒトの言語モデル置換における6つの誤り
- Authors: Zhicheng Lin,
- Abstract要約: 大規模言語モデル(LLM)のようなAIシステムは、行動研究や心理学研究における人間の参加者を置き換えることができるのだろうか?
ここでは「置き換え」の観点を批判的に評価し、その妥当性を損なう6つの解釈誤りを識別する。
それぞれの誤りは、LSMとは何か、人間の認知について何を教えてくれるのかについて、潜在的な誤解を表している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Can AI systems like large language models (LLMs) replace human participants in behavioral and psychological research? Here I critically evaluate the "replacement" perspective and identify six interpretive fallacies that undermine its validity. These fallacies are: (1) equating token prediction with human intelligence, (2) treating LLMs as the average human, (3) interpreting alignment as explanation, (4) anthropomorphizing AI systems, (5) essentializing identities, and (6) substituting model data for human evidence. Each fallacy represents a potential misunderstanding about what LLMs are and what they can tell us about human cognition. The analysis distinguishes levels of similarity between LLMs and humans, particularly functional equivalence (outputs) versus mechanistic equivalence (processes), while highlighting both technical limitations (addressable through engineering) and conceptual limitations (arising from fundamental differences between statistical and biological intelligence). For each fallacy, specific safeguards are provided to guide responsible research practices. Ultimately, the analysis supports conceptualizing LLMs as pragmatic simulation tools--useful for role-play, rapid hypothesis testing, and computational modeling (provided their outputs are validated against human data)--rather than as replacements for human participants. This framework enables researchers to leverage language models productively while respecting the fundamental differences between machine intelligence and human thought.
- Abstract(参考訳): 大規模言語モデル(LLM)のようなAIシステムは、行動研究や心理学研究における人間の参加者を置き換えることができるのだろうか?
ここでは「置き換え」の観点を批判的に評価し、その妥当性を損なう6つの解釈誤りを識別する。
これらの誤字は,(1)トークン予測と人間の知性,(2)LLMを平均的な人間として扱うこと,(3)アライメントを説明として解釈すること,(4)AIシステム,(5)アイデンティティの本質化,(6)人的証拠のためのモデルデータ置換である。
それぞれの誤りは、LSMとは何か、人間の認知について何を教えてくれるのかについて、潜在的な誤解を表している。
この分析は、LLMと人間、特に機能的同値(アウトプット)と機械的同値(プロセス)の類似性のレベルを区別し、技術的な制限(エンジニアリングを通して適用可能)と概念的制限(統計的および生物学的知能の根本的な違いから生じる)の両方を強調している。
それぞれの誤りに対して、責任ある研究慣行を導くための特定の保護策が提供される。
究極的には、この分析はLLMを実用シミュレーションツールとして概念化し、ロールプレイ、素早い仮説テスト、計算モデリング(人間のデータに対してアウトプットが検証される)に役立ちます。
このフレームワークは、機械学習と人間の思考の基本的な違いを尊重しながら、言語モデルを生産的に活用することを可能にする。
関連論文リスト
- Thinking beyond the anthropomorphic paradigm benefits LLM research [1.7392902719515677]
私たちは過去10年で何十万ものコンピュータサイエンス研究論文を分析しました。
大型言語モデル(LLM)研究における人類型用語の有病率と成長の実証的証拠を提示する。
これらの概念化は制限されている可能性があり、人間の類推を超えてLLMの理解と改善のための新たな道を開くと我々は主張する。
論文 参考訳(メタデータ) (2025-02-13T11:32:09Z) - Human-like conceptual representations emerge from language prediction [72.5875173689788]
大規模言語モデル(LLMs)は、言語データに対する次世代の予測を通じてのみ訓練され、顕著な人間的な振る舞いを示す。
これらのモデルは、人間に似た概念を発達させ、もしそうなら、そのような概念はどのように表現され、組織化されるのか?
以上の結果から,LLMは言語記述から他の概念に関する文脈的手がかりに関して柔軟に概念を導出できることが示唆された。
これらの結果は、構造化された人間のような概念表現が、現実世界の接地なしに言語予測から自然に現れることを証明している。
論文 参考訳(メタデータ) (2025-01-21T23:54:17Z) - Humanlike Cognitive Patterns as Emergent Phenomena in Large Language Models [2.9312156642007294]
我々は、意思決定バイアス、推論、創造性の3つの重要な認知領域にわたって、大規模言語モデルの能力を体系的にレビューする。
意思決定では、LSMはいくつかの人間のようなバイアスを示すが、人間の観察するバイアスは欠落している。
GPT-4のような先進的なLCMは、人間のシステム2思考に似た熟考的推論を示し、小さなモデルは人間レベルの性能に欠ける。
LLMはストーリーテリングのような言語ベースの創造的なタスクに優れているが、現実の文脈を必要とする散発的な思考タスクに苦労する。
論文 参考訳(メタデータ) (2024-12-20T02:26:56Z) - Large Language Models as Neurolinguistic Subjects: Identifying Internal Representations for Form and Meaning [49.60849499134362]
本研究では,大言語モデル(LLM)の記号化(形式)および記号化(意味)に関する言語的理解について検討する。
伝統的な精神言語学的評価は、しばしばLSMの真の言語能力を誤って表現する統計バイアスを反映している。
ミニマルペアと診断プローブを組み合わせてモデル層間のアクティベーションパターンを解析する新しい手法を用いて,ニューロ言語学的アプローチを提案する。
論文 参考訳(メタデータ) (2024-11-12T04:16:44Z) - Cross-lingual Speech Emotion Recognition: Humans vs. Self-Supervised Models [16.0617753653454]
本研究では,人間のパフォーマンスとSSLモデルの比較分析を行った。
また、モデルと人間のSER能力を発話レベルとセグメントレベルの両方で比較する。
その結果,適切な知識伝達を行うモデルでは,対象言語に適応し,ネイティブ話者に匹敵する性能が得られることがわかった。
論文 参考訳(メタデータ) (2024-09-25T13:27:17Z) - Theoretical and Methodological Framework for Studying Texts Produced by Large Language Models [0.0]
本稿では,大規模言語モデル(LLM)の研究における概念的,方法論的,技術的課題について述べる。
LLMを基質とし、モデルがシミュレートするエンティティを区別する理論的な枠組みの上に構築されている。
論文 参考訳(メタデータ) (2024-08-29T17:34:10Z) - PersLLM: A Personified Training Approach for Large Language Models [66.16513246245401]
社会実践, 一貫性, 動的発達という, 心理学に根ざした個性の原則を統合したPersLLMを提案する。
モデルパラメータに直接パーソナリティ特性を組み込み、誘導に対するモデルの抵抗性を高め、一貫性を高め、パーソナリティの動的進化を支援する。
論文 参考訳(メタデータ) (2024-07-17T08:13:22Z) - Human-like object concept representations emerge naturally in multimodal large language models [24.003766123531545]
大規模言語モデルにおける対象概念の表現が人間とどのように関連しているかを明らかにするために,行動解析と神経画像解析を併用した。
その結果,66次元の埋め込みは非常に安定で予測的であり,人間の心的表現に類似したセマンティッククラスタリングが認められた。
本研究は、機械知能の理解を深め、より人間的な人工知能システムの開発を知らせるものである。
論文 参考訳(メタデータ) (2024-07-01T08:17:19Z) - Human Simulacra: Benchmarking the Personification of Large Language Models [38.21708264569801]
大規模言語モデル(LLM)は、人間の知性の側面を忠実に模倣するシステムとして認識されている。
本稿では,仮想キャラクタのライフストーリーをゼロから構築するためのフレームワークを提案する。
実験により, 構築したシミュラクラは, 対象キャラクタと一致した擬人化応答を生成できることが実証された。
論文 参考訳(メタデータ) (2024-02-28T09:11:14Z) - Is Cognition and Action Consistent or Not: Investigating Large Language
Model's Personality [12.162460438332152]
本研究では,人格質問紙に対する回答を通じて,人格特性の証明における言語モデル(LLM)の信頼性について検討した。
我々のゴールは、LLMの人格傾向と実際の「行動」との整合性を評価することである。
本研究では,心理学的理論とメトリクスに基づく観察結果の仮説を提案する。
論文 参考訳(メタデータ) (2024-02-22T16:32:08Z) - Divergences between Language Models and Human Brains [59.100552839650774]
我々は,人間と機械語処理の相違点を体系的に探求する。
我々は、LMがうまく捉えられない2つの領域、社会的/感情的知性と身体的常識を識別する。
以上の結果から,これらの領域における微調整LMは,ヒト脳反応との整合性を向上させることが示唆された。
論文 参考訳(メタデータ) (2023-11-15T19:02:40Z) - Interpreting Pretrained Language Models via Concept Bottlenecks [55.47515772358389]
事前訓練された言語モデル(PLM)は、様々な自然言語処理タスクにおいて大きな進歩を遂げてきた。
ブラックボックスの性質による解釈可能性の欠如は、責任ある実装に課題をもたらす。
本研究では,人間にとって理解しやすい高レベルで有意義な概念を用いて,PLMを解釈する新しい手法を提案する。
論文 参考訳(メタデータ) (2023-11-08T20:41:18Z) - The Neuro-Symbolic Inverse Planning Engine (NIPE): Modeling
Probabilistic Social Inferences from Linguistic Inputs [50.32802502923367]
確率的目標推論領域における言語駆動の過程と社会的推論への影響について検討する。
本稿では,エージェントシナリオの言語入力から目標推定を行うニューロシンボリックモデルを提案する。
我々のモデルは人間の反応パターンと密に一致し、LLM単独の使用よりも人間の判断をより良く予測する。
論文 参考訳(メタデータ) (2023-06-25T19:38:01Z) - From Word Models to World Models: Translating from Natural Language to
the Probabilistic Language of Thought [124.40905824051079]
言語インフォームド・シンキングのための計算フレームワークである「構成」を合理的に提案する。
我々は、自然言語から確率論的思考言語への文脈感応的なマッピングとして、言語の意味を定式化する。
LLMは、現実的に適切な言語的意味をキャプチャする文脈依存翻訳を生成することができることを示す。
認知的なモチベーションを持つシンボリックモジュールを統合するために、我々のフレームワークを拡張します。
論文 参考訳(メタデータ) (2023-06-22T05:14:00Z) - Machine Psychology [54.287802134327485]
我々は、心理学にインスパイアされた行動実験において、研究のための実りある方向が、大きな言語モデルに係わっていると論じる。
本稿では,本手法が表に示す理論的視点,実験パラダイム,計算解析技術について述べる。
これは、パフォーマンスベンチマークを超えた、生成人工知能(AI)のための「機械心理学」の道を開くものだ。
論文 参考訳(メタデータ) (2023-03-24T13:24:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。