Embedding memory-efficient stochastic simulators as quantum trajectories
- URL: http://arxiv.org/abs/2402.04708v1
- Date: Wed, 7 Feb 2024 09:54:11 GMT
- Title: Embedding memory-efficient stochastic simulators as quantum trajectories
- Authors: Thomas J. Elliott and Mile Gu
- Abstract summary: We show how continuous-time quantum simulators can be embedded in open quantum systems.
We further show how such an embedding can be made exploiting for discrete-time processes.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: By exploiting the complexity intrinsic to quantum dynamics, quantum
technologies promise a whole host of computational advantages. One such
advantage lies in the field of stochastic modelling, where it has been shown
that quantum stochastic simulators can operate with a lower memory overhead
than their best classical counterparts. This advantage is particularly
pronounced for continuous-time stochastic processes; however, the corresponding
quantum stochastic simulators heretofore prescribed operate only on a
quasi-continuous-time basis, and suffer an ever-increasing circuit complexity
with increasing temporal resolution. Here, by establishing a correspondence
with quantum trajectories -- a method for modelling open quantum systems -- we
show how truly continuous-time quantum stochastic simulators can be embedded in
such open quantum systems, bridging this gap and obviating previous
constraints. We further show how such an embedding can be made for
discrete-time stochastic processes, which manifest as jump-only trajectories,
and discuss how viewing the correspondence in the reverse direction provides
new means of studying structural complexity in quantum systems themselves.
Related papers
- Dynamical simulations of many-body quantum chaos on a quantum computer [3.731709137507907]
We study a class of maximally chaotic circuits known as dual unitary circuits.
We show that a superconducting quantum processor with 91 qubits is able to accurately simulate these correlators.
We then probe dynamics beyond exact verification, by perturbing the circuits away from the dual unitary point.
arXiv Detail & Related papers (2024-11-01T17:57:13Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Quantum simulations of time-dependent Hamiltonians beyond the
quasi-static approximation [0.0]
existing approaches to analogue quantum simulations of time-dependent quantum systems rely on perturbative corrections to quantum simulations of time-independent quantum systems.
We overcome this restriction to perturbative treatments with an approach based on flow equations and a multi-mode Fourier expansion.
The potential of the quantum simulations that can be achieved with our approach is demonstrated with the pedagogical example of a Lambda-system and the quench in finite time through a quantum phase transition of a Chern insulator in a driven non-interacting Hubbard system.
arXiv Detail & Related papers (2023-05-26T17:12:19Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Importance Sampling Scheme for the Stochastic Simulation of Quantum Spin
Dynamics [0.0]
We develop an importance sampling scheme for the simulation of quantum spin dynamics.
An exact transformation is then carried out to preferentially sample trajectories that are close to the dominant one.
We demonstrate that this approach is capable of reducing the temporal growth of fluctuations in the quantities.
arXiv Detail & Related papers (2021-03-30T16:18:28Z) - Preparing random states and benchmarking with many-body quantum chaos [48.044162981804526]
We show how to predict and experimentally observe the emergence of random state ensembles naturally under time-independent Hamiltonian dynamics.
The observed random ensembles emerge from projective measurements and are intimately linked to universal correlations built up between subsystems of a larger quantum system.
Our work has implications for understanding randomness in quantum dynamics, and enables applications of this concept in a wider context.
arXiv Detail & Related papers (2021-03-05T08:32:43Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Prospects for Quantum Enhancement with Diabatic Quantum Annealing [0.0]
We assess the prospects for algorithms within the general framework of quantum annealing (QA) to achieve a quantum speedup.
We argue for continued exploration and interest in the QA framework on the basis that improved coherence times and control capabilities will enable the near-term exploration of several quantum optimization algorithms.
We argue that all of these protocols can be explored in a state-of-the-art manner by embracing the full range of novel out-of-equilibrium quantum dynamics generated by time-dependent effective transverse-field Ising Hamiltonians.
arXiv Detail & Related papers (2020-08-22T21:25:51Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Google's recent quantum supremacy experiment heralded a transition point where quantum computing performed a computational task, random circuit sampling.
We examine the constraints of the observed quantum runtime advantage in a larger number of qubits and gates.
arXiv Detail & Related papers (2020-05-05T20:11:53Z) - Quantum advantage in simulating stochastic processes [0.0]
We show that quantum memoryless dynamics can simulate classical processes that require memory.
We show that the set of classical states accessible via Markovian master equations with quantum controls is larger than the set of those accessible with classical controls.
arXiv Detail & Related papers (2020-05-05T18:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.