論文の概要: Room Transfer Function Reconstruction Using Complex-valued Neural Networks and Irregularly Distributed Microphones
- arxiv url: http://arxiv.org/abs/2402.04866v2
- Date: Tue, 26 Mar 2024 16:57:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-27 21:53:51.148077
- Title: Room Transfer Function Reconstruction Using Complex-valued Neural Networks and Irregularly Distributed Microphones
- Title(参考訳): 複素数値ニューラルネットワークと不規則分散マイクロホンを用いた室内伝達関数再構成
- Authors: Francesca Ronchini, Luca Comanducci, Mirco Pezzoli, Fabio Antonacci, Augusto Sarti,
- Abstract要約: 第1室共鳴の周波数範囲における室内伝達関数を推定するために,複素数値ニューラルネットワークを用いる。
複雑な数値のニューラルネットワークが部屋の移動関数を推定するために使われるのは、これが初めてである。
- 参考スコア(独自算出の注目度): 15.396703290586418
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reconstructing the room transfer functions needed to calculate the complex sound field in a room has several impor- tant real-world applications. However, an unpractical number of microphones is often required. Recently, in addition to classical signal processing methods, deep learning techniques have been applied to reconstruct the room transfer function starting from a very limited set of measurements at scattered points in the room. In this paper, we employ complex-valued neural networks to estimate room transfer functions in the frequency range of the first room resonances, using a few irregularly distributed microphones. To the best of our knowledge, this is the first time that complex-valued neural networks are used to estimate room transfer functions. To analyze the benefits of applying complex- valued optimization to the considered task, we compare the proposed technique with a state-of-the-art kernel-based signal processing approach for sound field reconstruction, showing that the proposed technique exhibits relevant advantages in terms of phase accuracy and overall quality of the reconstructed sound field. For informative purposes, we also compare the model with a similarly-structured data-driven approach that, however, applies a real-valued neural network to reconstruct only the magnitude of the sound field.
- Abstract(参考訳): 室内の複雑な音場を計算するのに必要な室内伝達関数の再構成には、いくつかの不規則な実世界の応用がある。
しかし、非現実的な数のマイクロフォンがしばしば必要である。
近年, 従来の信号処理法に加えて, 室内の散乱点における非常に限られた測定結果から, 室内伝達関数を再構築する深層学習技術が適用されている。
本稿では,数個の不規則分散マイクロホンを用いて,第1室共振器の周波数範囲における室内伝達関数を推定するために,複素数値ニューラルネットワークを用いる。
私たちの知る限りでは、複雑な評価されたニューラルネットワークが部屋の移動関数を推定するために使用されるのは、これが初めてです。
複素値最適化の利点を考察するため,提案手法を現状のカーネルベース信号処理手法と比較し,提案手法が位相精度と全体の音場品質の面で有意な利点を示すことを示す。
情報的目的のために、このモデルと、同様に構造化されたデータ駆動型アプローチを比較し、実数値ニューラルネットワークを適用して、音場の大きさだけを再構成する。
関連論文リスト
- Neural Experts: Mixture of Experts for Implicit Neural Representations [41.395193251292895]
入射神経表現(INR)は、画像、形状、音声、ビデオ再構成など様々なタスクで有効であることが証明されている。
本稿では,局所的な部分的連続関数の学習を可能にする暗黙的ニューラル表現手法(MoE)の混合を提案する。
既存のINRの定式化に専門家アーキテクチャを混在させることで,高速化,精度,メモリ要件が向上することを示す。
論文 参考訳(メタデータ) (2024-10-29T01:11:25Z) - Generative adversarial networks with physical sound field priors [6.256923690998173]
本稿では,GANを用いた音場再構築のための深層学習に基づくアプローチを提案する。
提案手法は, 平面波ベースと室内圧力の統計的分布を用いて, 限られた数の測定値から音場を再構成する。
提案手法は, 音場再構成に有望な手法であることを示す。
論文 参考訳(メタデータ) (2023-08-01T10:11:23Z) - Joint Channel Estimation and Feedback with Masked Token Transformers in
Massive MIMO Systems [74.52117784544758]
本稿では,CSI行列内の固有周波数領域相関を明らかにするエンコーダデコーダに基づくネットワークを提案する。
エンコーダ・デコーダネットワーク全体がチャネル圧縮に使用される。
提案手法は,共同作業における現状のチャネル推定およびフィードバック技術より優れる。
論文 参考訳(メタデータ) (2023-06-08T06:15:17Z) - Transformer Meets Boundary Value Inverse Problems [4.165221477234755]
変圧器を用いた深部直接サンプリング法は境界値逆問題のクラスを解くために提案される。
慎重に設計されたデータと再構成された画像の間に学習した逆演算子を評価することにより、リアルタイムな再構成を実現する。
論文 参考訳(メタデータ) (2022-09-29T17:45:25Z) - Three-Way Deep Neural Network for Radio Frequency Map Generation and
Source Localization [67.93423427193055]
空間、時間、周波数領域にわたる無線スペクトルのモニタリングは、5Gと6G以上の通信技術において重要な特徴となる。
本稿では,空間領域全体にわたる不規則分散計測を補間するGAN(Generative Adversarial Network)機械学習モデルを提案する。
論文 参考訳(メタデータ) (2021-11-23T22:25:10Z) - Over-and-Under Complete Convolutional RNN for MRI Reconstruction [57.95363471940937]
MR画像再構成のための最近のディープラーニングに基づく手法は、通常、汎用的なオートエンコーダアーキテクチャを利用する。
OUCR(Over-and-Under Complete Convolu?tional Recurrent Neural Network)を提案する。
提案手法は, トレーニング可能なパラメータの少ない圧縮されたセンシングと, 一般的なディープラーニングに基づく手法に対して, 大幅な改善を実現する。
論文 参考訳(メタデータ) (2021-06-16T15:56:34Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
本稿では,正弦波数を検出するニューラルネットワークアーキテクチャであるSignalNetを提案する。
基礎となるデータ分布と比較して,ネットワークの結果を比較するための最悪の学習しきい値を導入する。
シミュレーションでは、我々のアルゴリズムは常に3ビットデータのしきい値を超えることができるが、しばしば1ビットデータのしきい値を超えることはできない。
論文 参考訳(メタデータ) (2021-06-10T04:21:20Z) - PILOT: Introducing Transformers for Probabilistic Sound Event
Localization [107.78964411642401]
本稿では,受信したマルチチャンネル音声信号の時間的依存性を自己アテンション機構によってキャプチャする,トランスフォーマーに基づく新しい音声イベント定位フレームワークを提案する。
このフレームワークは, 公開されている3つの音声イベントローカライズデータセットを用いて評価し, 局所化誤差と事象検出精度の点で最先端の手法と比較した。
論文 参考訳(メタデータ) (2021-06-07T18:29:19Z) - Deep Sound Field Reconstruction in Real Rooms: Introducing the ISOBEL
Sound Field Dataset [0.0]
本稿では,4つの実室から測定したデータセットを導入し,低周波音場復元の評価を拡張した。
本稿では,低音域マイクロホンを用いた近年の深層学習に基づく音場再構成法について述べる。
論文 参考訳(メタデータ) (2021-02-12T11:34:18Z) - Estimation of the Mean Function of Functional Data via Deep Neural
Networks [6.230751621285321]
関数データに対して非パラメトリック回帰を行うディープニューラルネットワーク手法を提案する。
本手法は,アルツハイマー病患者における陽電子放出トモグラフィ画像の解析に用いる。
論文 参考訳(メタデータ) (2020-12-08T17:18:16Z) - Multi-Tones' Phase Coding (MTPC) of Interaural Time Difference by
Spiking Neural Network [68.43026108936029]
雑音の多い実環境下での正確な音像定位のための純粋スパイクニューラルネットワーク(SNN)に基づく計算モデルを提案する。
このアルゴリズムを,マイクロホンアレイを用いたリアルタイムロボットシステムに実装する。
実験の結果, 平均誤差方位は13度であり, 音源定位に対する他の生物学的に妥当なニューロモルフィックアプローチの精度を上回っていることがわかった。
論文 参考訳(メタデータ) (2020-07-07T08:22:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。