論文の概要: Voronoi Candidates for Bayesian Optimization
- arxiv url: http://arxiv.org/abs/2402.04922v1
- Date: Wed, 7 Feb 2024 14:47:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-08 14:49:27.258571
- Title: Voronoi Candidates for Bayesian Optimization
- Title(参考訳): ベイズ最適化のためのボロノイ候補
- Authors: Nathan Wycoff, John W. Smith, Annie S. Booth, Robert B. Gramacy
- Abstract要約: 多くの実践的なBO法、特に高次元では、取得関数の形式的で連続的な最適化を導出する。
本稿では,現在の設計点のヴォロノイ・テッセルレーションの境界上にある候補を用いて,それらのうち2つ以上に等しくなるようにすることを提案する。
テッセルレーションを明示的に生成することなく,ヴォロノイ境界を直接サンプリングすることで,効率的な実装の戦略について議論する。
- 参考スコア(独自算出の注目度): 2.7309692684728617
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bayesian optimization (BO) offers an elegant approach for efficiently
optimizing black-box functions. However, acquisition criteria demand their own
challenging inner-optimization, which can induce significant overhead. Many
practical BO methods, particularly in high dimension, eschew a formal,
continuous optimization of the acquisition function and instead search
discretely over a finite set of space-filling candidates. Here, we propose to
use candidates which lie on the boundary of the Voronoi tessellation of the
current design points, so they are equidistant to two or more of them. We
discuss strategies for efficient implementation by directly sampling the
Voronoi boundary without explicitly generating the tessellation, thus
accommodating large designs in high dimension. On a battery of test problems
optimized via Gaussian processes with expected improvement, our proposed
approach significantly improves the execution time of a multi-start continuous
search without a loss in accuracy.
- Abstract(参考訳): ベイズ最適化(BO)はブラックボックス関数を効率的に最適化するためのエレガントなアプローチを提供する。
しかし、獲得基準は独自の挑戦的な内部最適化を要求し、大きなオーバーヘッドを引き起こす可能性がある。
多くの実践的な BO 法、特に高次元では、取得関数の形式的かつ連続的な最適化を求め、代わりに有限個の空間充足候補を離散的に探索する。
ここでは、現在の設計点のボロノイ・テッセルレーションの境界上にある候補を用いて、2つ以上の設計点に等しくなるようにすることを提案する。
テッセルレーションを明示的に生成することなく,Voronoi境界を直接サンプリングすることで,大規模な設計を高次元に収容することで,効率的な実装戦略について議論する。
提案手法は,ガウス過程によって最適化されたテスト問題に対して,精度を損なうことなく,複数スタート連続探索の実行時間を大幅に改善する。
関連論文リスト
- An Adaptive Dimension Reduction Estimation Method for High-dimensional
Bayesian Optimization [6.79843988450982]
BOを高次元設定に拡張するための2段階最適化フレームワークを提案する。
私たちのアルゴリズムは、これらのステップを並列またはシーケンスで操作する柔軟性を提供します。
数値実験により,困難シナリオにおける本手法の有効性が検証された。
論文 参考訳(メタデータ) (2024-03-08T16:21:08Z) - Enhancing Gaussian Process Surrogates for Optimization and Posterior Approximation via Random Exploration [2.984929040246293]
ガウス過程シュロゲートモデルの精度を高めるために、ランダムな探索ステップに依存する新しいノイズフリーベイズ最適化戦略。
新しいアルゴリズムは、古典的なGP-UCBの実装の容易さを維持しているが、さらなる探索がそれらの収束を促進する。
論文 参考訳(メタデータ) (2024-01-30T14:16:06Z) - Learning Regions of Interest for Bayesian Optimization with Adaptive
Level-Set Estimation [84.0621253654014]
本稿では,高信頼領域を適応的にフィルタするBALLETというフレームワークを提案する。
理論的には、BALLETは探索空間を効率的に縮小することができ、標準BOよりも厳密な後悔を示すことができる。
論文 参考訳(メタデータ) (2023-07-25T09:45:47Z) - Generalizing Bayesian Optimization with Decision-theoretic Entropies [102.82152945324381]
統計的決定論の研究からシャノンエントロピーの一般化を考える。
まず,このエントロピーの特殊なケースがBO手順でよく用いられる獲得関数に繋がることを示す。
次に、損失に対する選択肢の選択が、どのようにして柔軟な獲得関数の族をもたらすかを示す。
論文 参考訳(メタデータ) (2022-10-04T04:43:58Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
木アンサンブルはアルゴリズムチューニングやニューラルアーキテクチャ検索といったブラックボックス最適化タスクに適している。
ブラックボックス最適化にツリーアンサンブルを使うことの2つのよく知られた課題は、探索のためのモデル不確実性を効果的に定量化し、また、 (ii) ピースワイドな定値取得関数を最適化することである。
我々のフレームワークは、連続/離散的機能に対する非拘束ブラックボックス最適化のための最先端の手法と同様に、混合変数の特徴空間と既知の入力制約を組み合わせた問題の競合する手法よりも優れている。
論文 参考訳(メタデータ) (2022-07-02T16:59:37Z) - Non-Convex Optimization with Certificates and Fast Rates Through Kernel
Sums of Squares [68.8204255655161]
非最適化近似問題を考える。
本稿では,最優先計算を保証するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-04-11T09:37:04Z) - High dimensional Bayesian Optimization Algorithm for Complex System in
Time Series [1.9371782627708491]
本稿では,新しい高次元ベイズ最適化アルゴリズムを提案する。
モデルの時間依存特性や次元依存特性に基づいて,提案アルゴリズムは次元を均等に低減することができる。
最適解の最終精度を高めるために,提案アルゴリズムは,最終段階におけるアダムに基づく一連のステップに基づく局所探索を追加する。
論文 参考訳(メタデータ) (2021-08-04T21:21:17Z) - BOSS: Bayesian Optimization over String Spaces [15.630421177117634]
本稿では,原弦上で直接作用するベイズ最適化法(BO法)を提案する。
BOループ内で文字列カーネルと遺伝的アルゴリズムを最初に使用することを提案する。
論文 参考訳(メタデータ) (2020-10-02T13:18:27Z) - Sub-linear Regret Bounds for Bayesian Optimisation in Unknown Search
Spaces [63.22864716473051]
本稿では,反復により探索空間を拡大(およびシフト)する新しいBOアルゴリズムを提案する。
理論的には、どちらのアルゴリズムにおいても、累積的後悔は線形以下の速度で増大する。
論文 参考訳(メタデータ) (2020-09-05T14:24:40Z) - Efficient Nonmyopic Bayesian Optimization via One-Shot Multi-Step Trees [28.46586066038317]
一般的なマルチステップ・ルック・ベイズ最適化の最初の効率的な実装を提供する。
これらの問題をネストした方法で解決する代わりに、全木のすべての決定変数を同等に最適化します。
提案手法は,様々なベンチマークにおいて,既存の手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2020-06-29T02:17:18Z) - Incorporating Expert Prior in Bayesian Optimisation via Space Warping [54.412024556499254]
大きな探索空間では、アルゴリズムは関数の最適値に達する前に、いくつかの低関数値領域を通過する。
このコールドスタートフェーズの1つのアプローチは、最適化を加速できる事前知識を使用することである。
本稿では,関数の事前分布を通じて,関数の最適性に関する事前知識を示す。
先行分布は、探索空間を最適関数の高確率領域の周りに拡張し、最適関数の低確率領域の周りに縮小するようにワープする。
論文 参考訳(メタデータ) (2020-03-27T06:18:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。