LtU-ILI: An All-in-One Framework for Implicit Inference in Astrophysics and Cosmology
- URL: http://arxiv.org/abs/2402.05137v2
- Date: Tue, 2 Jul 2024 17:38:18 GMT
- Title: LtU-ILI: An All-in-One Framework for Implicit Inference in Astrophysics and Cosmology
- Authors: Matthew Ho, Deaglan J. Bartlett, Nicolas Chartier, Carolina Cuesta-Lazaro, Simon Ding, Axel Lapel, Pablo Lemos, Christopher C. Lovell, T. Lucas Makinen, Chirag Modi, Viraj Pandya, Shivam Pandey, Lucia A. Perez, Benjamin Wandelt, Greg L. Bryan,
- Abstract summary: This paper presents the Learning the Universe Implicit Likelihood Inference (LtU-ILI) pipeline.
It is a cutting-edge machine learning (ML) inference in astrophysics and cosmology.
We present real applications across a range of astrophysics and cosmology problems.
- Score: 1.5070941464775514
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents the Learning the Universe Implicit Likelihood Inference (LtU-ILI) pipeline, a codebase for rapid, user-friendly, and cutting-edge machine learning (ML) inference in astrophysics and cosmology. The pipeline includes software for implementing various neural architectures, training schemata, priors, and density estimators in a manner easily adaptable to any research workflow. It includes comprehensive validation metrics to assess posterior estimate coverage, enhancing the reliability of inferred results. Additionally, the pipeline is easily parallelizable and is designed for efficient exploration of modeling hyperparameters. To demonstrate its capabilities, we present real applications across a range of astrophysics and cosmology problems, such as: estimating galaxy cluster masses from X-ray photometry; inferring cosmology from matter power spectra and halo point clouds; characterizing progenitors in gravitational wave signals; capturing physical dust parameters from galaxy colors and luminosities; and establishing properties of semi-analytic models of galaxy formation. We also include exhaustive benchmarking and comparisons of all implemented methods as well as discussions about the challenges and pitfalls of ML inference in astronomical sciences. All code and examples are made publicly available at https://github.com/maho3/ltu-ili.
Related papers
- Geometric deep learning for galaxy-halo connection: a case study for galaxy intrinsic alignments [1.2231689895452238]
We propose a Deep Generative Model trained on the IllustrisTNG-100 simulation to sample 3D galaxy shapes and orientations.
The model is able to learn and predict features such as galaxy orientations that are statistically consistent with the reference simulation.
arXiv Detail & Related papers (2024-09-27T13:55:10Z) - A comparison of Bayesian sampling algorithms for high-dimensional particle physics and cosmology applications [0.0]
We review and compare a wide range of Markov Chain Monte Carlo (MCMC) and nested sampling techniques.
We show that several examples widely thought to be most easily solved using nested sampling approaches can in fact be more efficiently solved using modern MCMC algorithms.
arXiv Detail & Related papers (2024-09-27T05:57:48Z) - Understanding Reinforcement Learning-Based Fine-Tuning of Diffusion Models: A Tutorial and Review [63.31328039424469]
This tutorial provides a comprehensive survey of methods for fine-tuning diffusion models to optimize downstream reward functions.
We explain the application of various RL algorithms, including PPO, differentiable optimization, reward-weighted MLE, value-weighted sampling, and path consistency learning.
arXiv Detail & Related papers (2024-07-18T17:35:32Z) - Spherinator and HiPSter: Representation Learning for Unbiased Knowledge Discovery from Simulations [0.0]
We describe a new, unbiased, and machine learning based approach to obtain useful scientific insights from a broad range of simulations.
Our concept is based on applying nonlinear dimensionality reduction to learn compact representations of the data in a low-dimensional space.
We present a prototype using a rotational invariant hyperspherical variational convolutional autoencoder, utilizing a power distribution in the latent space, and trained on galaxies from IllustrisTNG simulation.
arXiv Detail & Related papers (2024-06-06T07:34:58Z) - A point cloud approach to generative modeling for galaxy surveys at the
field level [0.5099081649205313]
We introduce a diffusion-based generative model to describe the distribution of galaxies in our Universe.
We demonstrate a first application to massive dark matter haloes in the Quijote simulation suite.
This approach can be extended to enable a comprehensive analysis of cosmological data.
arXiv Detail & Related papers (2023-11-28T19:00:00Z) - Higher-order topological kernels via quantum computation [68.8204255655161]
Topological data analysis (TDA) has emerged as a powerful tool for extracting meaningful insights from complex data.
We propose a quantum approach to defining Betti kernels, which is based on constructing Betti curves with increasing order.
arXiv Detail & Related papers (2023-07-14T14:48:52Z) - Towards Complex Dynamic Physics System Simulation with Graph Neural ODEs [75.7104463046767]
This paper proposes a novel learning based simulation model that characterizes the varying spatial and temporal dependencies in particle systems.
We empirically evaluate GNSTODE's simulation performance on two real-world particle systems, Gravity and Coulomb.
arXiv Detail & Related papers (2023-05-21T03:51:03Z) - PAC-NeRF: Physics Augmented Continuum Neural Radiance Fields for
Geometry-Agnostic System Identification [64.61198351207752]
Existing approaches to system identification (estimating the physical parameters of an object) from videos assume known object geometries.
In this work, we aim to identify parameters characterizing a physical system from a set of multi-view videos without any assumption on object geometry or topology.
We propose "Physics Augmented Continuum Neural Radiance Fields" (PAC-NeRF), to estimate both the unknown geometry and physical parameters of highly dynamic objects from multi-view videos.
arXiv Detail & Related papers (2023-03-09T18:59:50Z) - Robust Simulation-Based Inference in Cosmology with Bayesian Neural
Networks [3.497773679350512]
We show how using a Bayesian network framework for training SBI can mitigate biases and result in more reliable inference outside the training set.
SWAG is the first application of Weight Averaging to cosmology and apply it to SBI trained for inference on the microwave background.
arXiv Detail & Related papers (2022-07-18T08:41:00Z) - Inferring Structural Parameters of Low-Surface-Brightness-Galaxies with
Uncertainty Quantification using Bayesian Neural Networks [70.80563014913676]
We show that a Bayesian Neural Network (BNN) can be used for the inference, with uncertainty, of such parameters from simulated low-surface-brightness galaxy images.
Compared to traditional profile-fitting methods, we show that the uncertainties obtained using BNNs are comparable in magnitude, well-calibrated, and the point estimates of the parameters are closer to the true values.
arXiv Detail & Related papers (2022-07-07T17:55:26Z) - Supernova Light Curves Approximation based on Neural Network Models [53.180678723280145]
Photometric data-driven classification of supernovae becomes a challenge due to the appearance of real-time processing of big data in astronomy.
Recent studies have demonstrated the superior quality of solutions based on various machine learning models.
We study the application of multilayer perceptron (MLP), bayesian neural network (BNN), and normalizing flows (NF) to approximate observations for a single light curve.
arXiv Detail & Related papers (2022-06-27T13:46:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.