Comparing Quantum Machine Learning Approaches in Astrophysical Signal Detection
- URL: http://arxiv.org/abs/2507.19505v1
- Date: Mon, 14 Jul 2025 16:16:58 GMT
- Title: Comparing Quantum Machine Learning Approaches in Astrophysical Signal Detection
- Authors: Mansur Ziiatdinov, Farida Farsian, Francesco SchillirĂ³, Salvatore Distefano,
- Abstract summary: A four-step quantum machine learning (QML) workflow is proposed.<n>Different techniques and models are investigated within a case study centered on the Gamma-Ray Bursts (GRB) signal detection in the astrophysics domain.
- Score: 1.2124551005857038
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine Learning (ML) serves as a general-purpose, highly adaptable, and versatile framework for investigating complex systems across domains. However, the resulting computational resource demands, in terms of the number of parameters and the volume of data required to train ML models, can be high, often prohibitive. This is the case in astrophysics, where multimedia space data streams usually have to be analyzed. In this context, quantum computing emerges as a compelling and promising alternative, offering the potential to address these challenges in a feasible way. Specifically, a four-step quantum machine learning (QML) workflow is proposed encompassing data encoding, quantum circuit design, model training and evaluation. Then, focusing on the data encoding step, different techniques and models are investigated within a case study centered on the Gamma-Ray Bursts (GRB) signal detection in the astrophysics domain. The results thus obtained demonstrate the effectiveness of QML in astrophysics, highlighting the critical role of data encoding, which significantly affects the QML model performance.
Related papers
- Learning to Program Quantum Measurements for Machine Learning [10.617463958884528]
Development of high-performance quantum machine learning models requires expert-level expertise.<n>We propose an innovative framework that renders the observable of a quantum system-specifically, the Hermitian matrix-trainable.<n>We demonstrate that the proposed method effectively programs observables dynamically within variational quantum circuits, achieving superior results compared to existing approaches.
arXiv Detail & Related papers (2025-05-18T02:39:22Z) - Quantum QSAR for drug discovery [41.94295877935867]
Quantitative Structure-Activity Relationship (QSAR) modeling is key in drug discovery.<n>This research proposes enhancing QSAR techniques through Quantum Support Vector Machines (QSVMs)<n>By using quantum data encoding and quantum kernel functions, we aim to develop more accurate and efficient predictive models.
arXiv Detail & Related papers (2025-05-06T17:58:33Z) - An Efficient Quantum Classifier Based on Hamiltonian Representations [50.467930253994155]
Quantum machine learning (QML) is a discipline that seeks to transfer the advantages of quantum computing to data-driven tasks.<n>We propose an efficient approach that circumvents the costs associated with data encoding by mapping inputs to a finite set of Pauli strings.<n>We evaluate our approach on text and image classification tasks, against well-established classical and quantum models.
arXiv Detail & Related papers (2025-04-13T11:49:53Z) - Modeling Quantum Machine Learning for Genomic Data Analysis [12.248184406275405]
Quantum Machine Learning (QML) continues to evolve, unlocking new opportunities for diverse applications.<n>We investigate and evaluate the applicability of QML models for binary classification of genome sequence data by employing various feature mapping techniques.<n>We present an open-source, independent Qiskit-based implementation to conduct experiments on a benchmark genomic dataset.
arXiv Detail & Related papers (2025-01-14T15:14:26Z) - Learning to Measure Quantum Neural Networks [10.617463958884528]
We introduce a novel approach that makes the observable of the quantum system-specifically, the Hermitian matrix-learnable.<n>Our method features an end-to-end differentiable learning framework, where the parameterized observable is trained alongside the ordinary quantum circuit parameters.<n>Using numerical simulations, we show that the proposed method can identify observables for variational quantum circuits that lead to improved outcomes.
arXiv Detail & Related papers (2025-01-10T02:28:19Z) - Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits [48.33631905972908]
We introduce an innovative approach that utilizes pre-trained neural networks to enhance Variational Quantum Circuits (VQC)
This technique effectively separates approximation error from qubit count and removes the need for restrictive conditions.
Our results extend to applications such as human genome analysis, demonstrating the broad applicability of our approach.
arXiv Detail & Related papers (2024-11-13T12:03:39Z) - Discrete Randomized Smoothing Meets Quantum Computing [40.54768963869454]
We show how to encode all the perturbations of the input binary data in superposition and use Quantum Amplitude Estimation (QAE) to obtain a quadratic reduction in the number of calls to the model.
In addition, we propose a new binary threat model to allow for an extensive evaluation of our approach on images, graphs, and text.
arXiv Detail & Related papers (2024-08-01T20:21:52Z) - Drastic Circuit Depth Reductions with Preserved Adversarial Robustness
by Approximate Encoding for Quantum Machine Learning [0.5181797490530444]
We implement methods for the efficient preparation of quantum states representing encoded image data using variational, genetic and matrix product state based algorithms.
Results show that these methods can approximately prepare states to a level suitable for QML using circuits two orders of magnitude shallower than a standard state preparation implementation.
arXiv Detail & Related papers (2023-09-18T01:49:36Z) - Pre-training Tensor-Train Networks Facilitates Machine Learning with Variational Quantum Circuits [70.97518416003358]
Variational quantum circuits (VQCs) hold promise for quantum machine learning on noisy intermediate-scale quantum (NISQ) devices.
While tensor-train networks (TTNs) can enhance VQC representation and generalization, the resulting hybrid model, TTN-VQC, faces optimization challenges due to the Polyak-Lojasiewicz (PL) condition.
To mitigate this challenge, we introduce Pre+TTN-VQC, a pre-trained TTN model combined with a VQC.
arXiv Detail & Related papers (2023-05-18T03:08:18Z) - Reflection Equivariant Quantum Neural Networks for Enhanced Image
Classification [0.7232471205719458]
We build new machine learning models which explicitly respect the symmetries inherent in their data, so-called geometric quantum machine learning (GQML)
We find that these networks are capable of consistently and significantly outperforming generic ansatze on complicated real-world image datasets.
arXiv Detail & Related papers (2022-12-01T04:10:26Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
We focus on the case of learning with a single qubit, using data re-uploading techniques.
We implement the different proposed formulations in toy and real-world datasets using the qiskit quantum computing SDK.
arXiv Detail & Related papers (2022-11-23T18:25:32Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
We develop an approach to characterize the dynamics of a quantum device and learn device parameters.
This approach outperforms physics-agnostic recurrent neural networks trained on numerically generated and experimental data.
This demonstration shows how leveraging domain knowledge improves the accuracy and efficiency of this characterization task.
arXiv Detail & Related papers (2021-06-24T15:58:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.