論文の概要: No Dimensional Sampling Coresets for Classification
- arxiv url: http://arxiv.org/abs/2402.05280v1
- Date: Wed, 7 Feb 2024 21:53:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-09 17:16:35.799515
- Title: No Dimensional Sampling Coresets for Classification
- Title(参考訳): 分類のための非次元サンプリングコアセット
- Authors: Meysam Alishahi and Jeff M. Phillips
- Abstract要約: 我々は、感度サンプリングフレームワークを用いて、分類問題に対するコアセットについて知られていることを洗練し、一般化する。
我々の分析は、最初の非次元コアセットを提供するので、サイズは次元に依存しない。
私たちが開発している重要なツールは、主要な感度サンプリングアプローチのRadamacher複雑性バージョンです。
- 参考スコア(独自算出の注目度): 9.728249200351375
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We refine and generalize what is known about coresets for classification
problems via the sensitivity sampling framework. Such coresets seek the
smallest possible subsets of input data, so one can optimize a loss function on
the coreset and ensure approximation guarantees with respect to the original
data. Our analysis provides the first no dimensional coresets, so the size does
not depend on the dimension. Moreover, our results are general, apply for
distributional input and can use iid samples, so provide sample complexity
bounds, and work for a variety of loss functions. A key tool we develop is a
Radamacher complexity version of the main sensitivity sampling approach, which
can be of independent interest.
- Abstract(参考訳): 我々は,センシティブサンプリングフレームワークを用いて,分類問題のコアセットについて知られていることを洗練し,一般化する。
このようなコアセットは入力データの最小部分集合を求めるため、コアセット上の損失関数を最適化し、元のデータに対する近似を保証することができる。
本解析は,最初の無次元コアセットを提供するので,サイズは次元に依存しない。
さらに, 分布的入力に適用し, iidサンプルを使うことができるため, サンプルの複雑性境界を提供し, 様々な損失関数に対して機能する。
私たちが開発している重要なツールは、主要な感度サンプリングアプローチのRadamacher複雑性バージョンです。
関連論文リスト
- Gradient-Based Feature Learning under Structured Data [57.76552698981579]
異方性設定では、一般的に使用される球面勾配力学は真の方向を回復できないことがある。
バッチ正規化を連想させる適切な重み正規化は、この問題を軽減することができることを示す。
特に、スパイクモデルの下では、勾配に基づくトレーニングのサンプルの複雑さは情報指数とは独立にできる。
論文 参考訳(メタデータ) (2023-09-07T16:55:50Z) - Learning Feature Matching via Matchable Keypoint-Assisted Graph Neural
Network [52.29330138835208]
画像のペア間の局所的な特徴の正確なマッチングは、コンピュータビジョンの課題である。
従来の研究では、注意に基づくグラフニューラルネットワーク(GNN)と、画像内のキーポイントに完全に接続されたグラフを使用するのが一般的だった。
本稿では,非繰り返しキーポイントをバイパスし,マッチング可能なキーポイントを利用してメッセージパッシングを誘導する,疎注意に基づくGNNアーキテクチャであるMaKeGNNを提案する。
論文 参考訳(メタデータ) (2023-07-04T02:50:44Z) - Entropic Wasserstein Component Analysis [8.744017403796406]
次元減少(DR)の鍵となる要件は、元のサンプルと組込みサンプルの間にグローバルな依存関係を組み込むことである。
最適輸送(OT)と主成分分析(PCA)の原理を組み合わせる。
提案手法は, サンプルの近傍情報を自然に符号化するエントロピーOTを用いて, 復元誤差を最小化する最適線形部分空間を求める。
論文 参考訳(メタデータ) (2023-03-09T08:59:33Z) - Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting [62.23057729112182]
異なるスコアに基づく因果探索法は観測データから有向非巡回グラフを学習する。
本稿では,Reweighted Score関数ReScoreの適応重みを動的に学習することにより因果発見性能を向上させるためのモデルに依存しないフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-06T14:49:59Z) - Unsupervised Features Ranking via Coalitional Game Theory for
Categorical Data [0.28675177318965034]
教師なしの機能選択は、機能の数を減らすことを目的としている。
導出特徴の選択は、冗長率を下げる競合する手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-05-17T14:17:36Z) - Generalization of Neural Combinatorial Solvers Through the Lens of
Adversarial Robustness [68.97830259849086]
ほとんどのデータセットは単純なサブプロブレムのみをキャプチャし、おそらくは突発的な特徴に悩まされる。
本研究では, 局所的な一般化特性である対向ロバスト性について検討し, 厳密でモデル固有な例と突発的な特徴を明らかにする。
他のアプリケーションとは異なり、摂動モデルは知覚できないという主観的な概念に基づいて設計されているため、摂動モデルは効率的かつ健全である。
驚くべきことに、そのような摂動によって、十分に表現力のあるニューラルソルバは、教師あり学習で共通する正確さと悪質さのトレードオフの限界に悩まされない。
論文 参考訳(メタデータ) (2021-10-21T07:28:11Z) - Forster Decomposition and Learning Halfspaces with Noise [60.691817861402676]
フォースター変換 (Forster transform) は、分布を優れた反集中特性を持つものに変換する演算である。
本稿では,Forster変換が存在し,効率よく計算できる少数の分布の解離混合として,任意の分布を効率的に分解可能であることを示す。
論文 参考訳(メタデータ) (2021-07-12T17:00:59Z) - Sparse PCA via $l_{2,p}$-Norm Regularization for Unsupervised Feature
Selection [138.97647716793333]
再構成誤差を$l_2,p$ノルム正規化と組み合わせることで,単純かつ効率的な特徴選択手法を提案する。
提案する非教師付きモデルを解くための効率的な最適化アルゴリズムを提案し,アルゴリズムの収束と計算の複雑さを理論的に解析する。
論文 参考訳(メタデータ) (2020-12-29T04:08:38Z) - Oblivious Data for Fairness with Kernels [1.599072005190786]
感度・非感度特性が利用できる場合のアルゴリズムフェアネスの問題について検討する。
このような不愉快な特徴を生成するための重要な要素は、ヒルベルト空間評価条件予測である。
本稿では,プラグインアプローチを提案し,推定誤差の制御方法を示す。
論文 参考訳(メタデータ) (2020-02-07T16:59:24Z) - Outlier Detection Ensemble with Embedded Feature Selection [42.8338013000469]
組込み特徴選択(ODEFS)を用いた外乱検出アンサンブルフレームワークを提案する。
各ランダムなサブサンプリングベースの学習コンポーネントに対して、ODEFSは、特徴選択と外れ値検出をペアのランキング式に統一する。
我々は、特徴選択と例選択を同時に最適化するために閾値付き自己評価学習を採用する。
論文 参考訳(メタデータ) (2020-01-15T13:14:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。