論文の概要: Neural Graphics Primitives-based Deformable Image Registration for
On-the-fly Motion Extraction
- arxiv url: http://arxiv.org/abs/2402.05568v1
- Date: Thu, 8 Feb 2024 11:09:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-09 15:28:08.532277
- Title: Neural Graphics Primitives-based Deformable Image Registration for
On-the-fly Motion Extraction
- Title(参考訳): オンザフライモーション抽出のためのニューラルグラフィックスプリミティブに基づく変形可能な画像登録
- Authors: Xia Li, Fabian Zhang, Muheng Li, Damien Weber, Antony Lomax, Joachim
Buhmann, Ye Zhang
- Abstract要約: 放射線治療における屈折内運動は、通常、変形性画像登録(DIR)を用いてモデル化される
既存の手法は、しばしば速度と精度のバランスをとるのに苦労し、臨床シナリオにおける適用性を制限する。
本研究では、ニューラルネットワークプリミティブ(NGP)を利用して変位ベクトル場(DVF)を最適化する新しいアプローチを提案する。
本手法を4D-CT肺データセットDIR-labで検証し,1.77秒で1.15pm1.15mmの目標登録誤差(TRE)を達成した。
- 参考スコア(独自算出の注目度): 9.599774878892665
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Intra-fraction motion in radiotherapy is commonly modeled using deformable
image registration (DIR). However, existing methods often struggle to balance
speed and accuracy, limiting their applicability in clinical scenarios. This
study introduces a novel approach that harnesses Neural Graphics Primitives
(NGP) to optimize the displacement vector field (DVF). Our method leverages
learned primitives, processed as splats, and interpolates within space using a
shallow neural network. Uniquely, it enables self-supervised optimization at an
ultra-fast speed, negating the need for pre-training on extensive datasets and
allowing seamless adaptation to new cases. We validated this approach on the
4D-CT lung dataset DIR-lab, achieving a target registration error (TRE) of
1.15\pm1.15 mm within a remarkable time of 1.77 seconds. Notably, our method
also addresses the sliding boundary problem, a common challenge in conventional
DIR methods.
- Abstract(参考訳): 放射線治療における屈折内運動は、一般的に変形性画像登録(DIR)を用いてモデル化される。
しかし、既存の方法はしばしばスピードと正確さのバランスをとるのに苦労し、臨床シナリオでの適用性が制限される。
本研究では,ニューラルネットワークプリミティブ(NGP)を用いた変位ベクトル場(DVF)の最適化手法を提案する。
本手法は,学習したプリミティブをスプレートとして処理し,浅層ニューラルネットワークを用いて空間内を補間する。
ユニークなのは、超高速で自己教師付き最適化を可能にし、広範なデータセットで事前トレーニングする必要をなくし、新たなケースへのシームレスな適応を可能にすることだ。
本手法を4D-CT肺データセットDIR-labで検証し,1.77秒で1.15\pm1.15mmの目標登録誤差(TRE)を達成した。
また,本手法は従来のDIR法において共通の課題であるすべり境界問題にも対処する。
関連論文リスト
- Intraoperative Registration by Cross-Modal Inverse Neural Rendering [61.687068931599846]
クロスモーダル逆ニューラルレンダリングによる神経外科手術における術中3D/2Dレジストレーションのための新しいアプローチを提案する。
本手法では,暗黙の神経表現を2つの構成要素に分離し,術前および術中における解剖学的構造について検討した。
臨床症例の振り返りデータを用いて本法の有効性を検証し,現在の登録基準を満たした状態での最先端の検査成績を示した。
論文 参考訳(メタデータ) (2024-09-18T13:40:59Z) - LeRF: Learning Resampling Function for Adaptive and Efficient Image Interpolation [64.34935748707673]
最近のディープニューラルネットワーク(DNN)は、学習データ前処理を導入することで、パフォーマンスを著しく向上させた。
本稿では,DNNが学習した構造的前提と局所的連続仮定の両方を活かした学習再サンプリング(Learning Resampling, LeRF)を提案する。
LeRFは空間的に異なる再サンプリング関数を入力画像ピクセルに割り当て、ニューラルネットワークを用いてこれらの再サンプリング関数の形状を予測する。
論文 参考訳(メタデータ) (2024-07-13T16:09:45Z) - Enhancing Dynamic CT Image Reconstruction with Neural Fields Through Explicit Motion Regularizers [0.0]
2次元以上の時間計算トモグラフィーにおけるPDEに基づく運動正規化器の導入によるニューラルネットワークの最適化の利点を示す。
また、ニューラルネットワークをグリッドベースの解法と比較し、前者が後者より優れていることを示す。
論文 参考訳(メタデータ) (2024-06-03T13:07:29Z) - Self-STORM: Deep Unrolled Self-Supervised Learning for Super-Resolution Microscopy [55.2480439325792]
我々は、シーケンス固有のモデルベースのオートエンコーダをトレーニングすることで、そのようなデータの必要性を軽減する、深層無学習の自己教師付き学習を導入する。
提案手法は, 監視対象の性能を超過する。
論文 参考訳(メタデータ) (2024-03-25T17:40:32Z) - Efficient Deformable Tissue Reconstruction via Orthogonal Neural Plane [58.871015937204255]
変形性組織を再建するための高速直交平面(Fast Orthogonal Plane)を導入する。
我々は外科手術を4Dボリュームとして概念化し、それらをニューラルネットワークからなる静的および動的フィールドに分解する。
この分解により4次元空間が増加し、メモリ使用量が減少し、最適化が高速化される。
論文 参考訳(メタデータ) (2023-12-23T13:27:50Z) - Adapting the Mean Teacher for keypoint-based lung registration under
geometric domain shifts [75.51482952586773]
ディープニューラルネットワークは一般的に、ラベル付きトレーニングデータが多く必要であり、トレーニングデータとテストデータの間のドメインシフトに弱い。
本稿では,ラベル付きソースからラベル付きターゲットドメインへのモデルの適用により,画像登録のための幾何学的領域適応手法を提案する。
本手法は,ベースラインモデルの精度を目標データに適合させながら,ベースラインモデルの50%/47%を継続的に改善する。
論文 参考訳(メタデータ) (2022-07-01T12:16:42Z) - Implicit Optimizer for Diffeomorphic Image Registration [3.1970342304563037]
本稿では,Diffomorphic Image Registration (IDIR) の高速かつ正確なインプシットを提案する。
提案手法を2つの大規模MR脳スキャンデータセットで評価し,提案手法が従来の画像登録手法よりも高速かつ優れた登録結果を提供することを示した。
論文 参考訳(メタデータ) (2022-02-25T05:04:29Z) - Deep Learning Adapted Acceleration for Limited-view Photoacoustic
Computed Tomography [1.8830359888767887]
光音響計算トモグラフィ(PACT)は、PA信号検出のための超音波トランスデューサアレイでターゲットを照らすために、焦点のない大面積の光を使用する。
限定ビュー問題は、幾何学的条件の制限により、PACTの低画質の画像を引き起こす可能性がある。
数学的変動モデルとディープラーニングを組み合わせたモデルベース手法を提案する。
論文 参考訳(メタデータ) (2021-11-08T02:05:58Z) - Learning a Model-Driven Variational Network for Deformable Image
Registration [89.9830129923847]
VR-Netは、教師なしの変形可能な画像登録のための新しいカスケード可変ネットワークである。
登録精度において最先端のディープラーニング手法よりも優れています。
ディープラーニングの高速推論速度と変分モデルのデータ効率を維持している。
論文 参考訳(メタデータ) (2021-05-25T21:37:37Z) - A Lightweight Structure Aimed to Utilize Spatial Correlation for
Sparse-View CT Reconstruction [6.8438089867929905]
重度の画像ノイズやストレッチアーティファクトは、低線量プロトコルの主要な問題であることが判明した。
本論文では,現在普及しているアルゴリズムの限界を破るデュアルドメイン深層学習手法を提案する。
提案手法は,40.305のPSNRと0.948のSSIMに到達し,高モデルモビリティを確保しながら,最先端の性能を実現する。
論文 参考訳(メタデータ) (2021-01-19T13:26:17Z) - Registration by tracking for sequential 2D MRI [0.0]
本稿では,2次元MR画像の逐次特性を利用して変位場を推定する画像登録手法を提案する。
本手法は, セグメンテーション心データセットを用いて評価し, 従来の2つの手法と比較すると, 改善された評価結果が得られた。
論文 参考訳(メタデータ) (2020-03-24T13:12:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。