論文の概要: Nonparametric Instrumental Variable Regression through Stochastic
Approximate Gradients
- arxiv url: http://arxiv.org/abs/2402.05639v1
- Date: Thu, 8 Feb 2024 12:50:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-09 15:19:05.245548
- Title: Nonparametric Instrumental Variable Regression through Stochastic
Approximate Gradients
- Title(参考訳): 確率近似勾配による非パラメトリック機器可変回帰
- Authors: Caio Peixoto, Yuri Saporito, Yuri Fonseca
- Abstract要約: 本稿では,非パラメトリックインスツルメンタル変数(NPIV)の回帰を行うための新しいフレームワークであるSAGD-IVを提案する。
提案アルゴリズムの理論的サポートを提供し、実証実験によりその競争性能をさらに実証する。
- 参考スコア(独自算出の注目度): 0.36832029288386137
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This paper proposes SAGD-IV, a novel framework for conducting nonparametric
instrumental variable (NPIV) regression by employing stochastic approximate
gradients to minimize the projected populational risk. Instrumental Variables
(IVs) are widely used in econometrics to address estimation problems in the
presence of unobservable confounders, and the Machine Learning community has
devoted significant effort to improving existing methods and devising new ones
in the NPIV setting, which is known to be an ill-posed linear inverse problem.
We provide theoretical support for our algorithm and further exemplify its
competitive performance through empirical experiments. Furthermore, we address,
with promising results, the case of binary outcomes, which has not received as
much attention from the community as its continuous counterpart.
- Abstract(参考訳): SAGD-IVは、確率的近似勾配を用いて、予測された人口リスクを最小限に抑えることで、非パラメトリックな計測変数(NPIV)回帰を行うための新しいフレームワークである。
計測変数(IV)は、観測不能な共同創設者の存在下で推定問題に対処するために広く用いられており、機械学習コミュニティは既存の手法の改善やNPIV設定における新たな手法の考案に多大な努力を払ってきた。
提案アルゴリズムの理論的サポートを提供し、実証実験によりその競争性能をさらに実証する。
さらに,その継続的な成果がコミュニティからあまり注目されていないバイナリ結果の場合についても,有望な結果とともに対処する。
関連論文リスト
- Regularized DeepIV with Model Selection [72.17508967124081]
正規化DeepIV(RDIV)回帰は最小ノルムIV解に収束することができる。
我々の手法は現在の最先端の収束率と一致している。
論文 参考訳(メタデータ) (2024-03-07T05:38:56Z) - Online Learning Approach for Survival Analysis [1.0499611180329806]
生存分析のためのオンライン数学フレームワークを導入し、動的環境や検閲データへのリアルタイム適応を可能にする。
このフレームワークは、最適2階オンライン凸最適化アルゴリズムによるイベント時間分布の推定を可能にする-オンラインニュートンステップ(ONS)
論文 参考訳(メタデータ) (2024-02-07T08:15:30Z) - Model-Based Epistemic Variance of Values for Risk-Aware Policy Optimization [59.758009422067]
モデルベース強化学習における累積報酬に対する不確実性を定量化する問題を考察する。
我々は、解が値の真後分散に収束する新しい不確実性ベルマン方程式(UBE)を提案する。
本稿では,リスク・サーキングとリスク・アバース・ポリシー最適化のいずれにも適用可能な汎用ポリシー最適化アルゴリズムQ-Uncertainty Soft Actor-Critic (QU-SAC)を導入する。
論文 参考訳(メタデータ) (2023-12-07T15:55:58Z) - A Stability Principle for Learning under Non-Stationarity [1.1510009152620668]
非定常環境における統計的学習のための多目的フレームワークを開発する。
解析の中心には、関数間の類似性の尺度と、非定常データ列を準定常断片に分割するセグメンテーション技法の2つの新しい要素がある。
論文 参考訳(メタデータ) (2023-10-27T17:53:53Z) - Convergence of uncertainty estimates in Ensemble and Bayesian sparse
model discovery [4.446017969073817]
ブートストラップに基づく逐次しきい値最小二乗推定器による雑音に対する精度と頑健性の観点から経験的成功を示す。
このブートストラップに基づくアンサンブル手法は,誤差率の指数収束率で,確率的に正しい可変選択を行うことができることを示す。
論文 参考訳(メタデータ) (2023-01-30T04:07:59Z) - The Role of Baselines in Policy Gradient Optimization [83.42050606055822]
Emphstateのバリューベースラインが、オン・ポリティクスを可能にしていることを示す。
世界的な最適な政策勾配(NPG)に収束する。
O (1/t) レート勾配でのポリシー。
値ベースラインの主な効果は、その分散ではなく、更新のアグレッシブさをthabfreduceすることにある。
論文 参考訳(メタデータ) (2023-01-16T06:28:00Z) - Data-Driven Influence Functions for Optimization-Based Causal Inference [105.5385525290466]
統計的汎関数に対するガトー微分を有限差分法で近似する構成的アルゴリズムについて検討する。
本研究では,確率分布を事前知識がないが,データから推定する必要がある場合について検討する。
論文 参考訳(メタデータ) (2022-08-29T16:16:22Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
本研究では, 局所的およびグローバルな平滑化手法の性能と, 状態測定値の偏差について検討・比較する。
一般に,測度データセット全体を用いたグローバルな手法は,局所点の周辺に隣接するデータサブセットを用いる局所的手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-01-29T23:31:25Z) - Finite Sample Analysis of Minimax Offline Reinforcement Learning:
Completeness, Fast Rates and First-Order Efficiency [83.02999769628593]
強化学習におけるオフ・ポリティィ・アセスメント(OPE)の理論的特徴について述べる。
ミニマックス法により、重みと品質関数の高速収束を実現することができることを示す。
非タブラル環境における1次効率を持つ最初の有限サンプル結果を示す。
論文 参考訳(メタデータ) (2021-02-05T03:20:39Z) - Stable Neural Flows [15.318500611972441]
ニューラルネットワークによってパラメータ化されたエネルギー汎関数上で軌道が進化するニューラル常微分方程式(ニューラルODE)の確率的に安定な変種を導入する。
学習手順は最適制御問題としてキャストされ、随伴感性分析に基づいて近似解が提案される。
論文 参考訳(メタデータ) (2020-03-18T06:27:21Z) - Convergence and sample complexity of gradient methods for the model-free
linear quadratic regulator problem [27.09339991866556]
本稿では,コントローラの空間を直接探索することにより,未知の計算系に対する最適制御を求める。
我々は、安定化フィードバックゲインの勾配-フローのダイナミクスセットに焦点をあてて、そのような手法の性能と効率を最小化するための一歩を踏み出した。
論文 参考訳(メタデータ) (2019-12-26T16:56:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。