論文の概要: Hybrid Neural Representations for Spherical Data
- arxiv url: http://arxiv.org/abs/2402.05965v1
- Date: Mon, 5 Feb 2024 13:03:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-18 14:22:56.737361
- Title: Hybrid Neural Representations for Spherical Data
- Title(参考訳): 球面データのためのハイブリッドニューラル表現
- Authors: Hyomin Kim, Yunhui Jang, Jaeho Lee, Sungsoo Ahn
- Abstract要約: 我々は,Hybrid Neural Representations for Spherical Data (HNeR-S)という新しい手法を提案する。
主目的は、球面特徴格子を用いて、多層認識と組み合わせた位置特徴を求め、目標信号を予測することである。
気象データとCMBデータに一致した等方的および階層的等方性等方性等方性画素化構造を持つ特徴格子について考察する。
- 参考スコア(独自算出の注目度): 25.080272865553003
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we study hybrid neural representations for spherical data, a
domain of increasing relevance in scientific research. In particular, our work
focuses on weather and climate data as well as comic microwave background (CMB)
data. Although previous studies have delved into coordinate-based neural
representations for spherical signals, they often fail to capture the intricate
details of highly nonlinear signals. To address this limitation, we introduce a
novel approach named Hybrid Neural Representations for Spherical data (HNeR-S).
Our main idea is to use spherical feature-grids to obtain positional features
which are combined with a multilayer perception to predict the target signal.
We consider feature-grids with equirectangular and hierarchical equal area
isolatitude pixelization structures that align with weather data and CMB data,
respectively. We extensively verify the effectiveness of our HNeR-S for
regression, super-resolution, temporal interpolation, and compression tasks.
- Abstract(参考訳): 本稿では,科学研究における関連性を高める領域である球面データに対するハイブリッドニューラル表現について検討する。
特に本研究は,気象・気候データとcomcom microwave background (cmb)データに焦点を当てている。
これまでの研究では球面信号の座標に基づく神経表現が研究されてきたが、高度に非線形な信号の複雑な詳細を捉えられなかった。
この制限に対処するため,Hybrid Neural Representations for Spherical Data (HNeR-S) という新しい手法を導入する。
提案手法では,球形特徴格子を用いて多層知覚と組み合わせた位置特徴量を求め,目標信号の予測を行う。
気象データとcmbデータに対応する等角および階層的等域等緯度画素化構造を持つ特徴格子について考察する。
回帰,超解像,時間補間,圧縮タスクにおけるHNeR-Sの有効性を広範囲に検証した。
関連論文リスト
- Geographic Location Encoding with Spherical Harmonics and Sinusoidal Representation Networks [8.765273923374982]
最近の研究は、Double Fourier Sphere (DFS) の特徴に基づく正弦波と正弦波の投影を用いて座標を埋め込む。
本研究では球面調和基底関数を組み合わせたグローバル分散地理的データのための新しい位置エンコーダを提案する。
球面高調波と正弦波表現ネットワークは,それぞれが互いに競合するが,同時にタスク間の最先端性能を設定できることを示す。
論文 参考訳(メタデータ) (2023-10-10T16:12:17Z) - NeuRBF: A Neural Fields Representation with Adaptive Radial Basis
Functions [93.02515761070201]
本稿では,信号表現に一般放射状基底を用いる新しいタイプのニューラルネットワークを提案する。
提案手法は, 空間適応性が高く, ターゲット信号により密着可能な, フレキシブルなカーネル位置と形状を持つ一般ラジアルベース上に構築する。
ニューラルラジアンス場再構成に適用した場合,本手法はモデルサイズが小さく,訓練速度が同等である最先端のレンダリング品質を実現する。
論文 参考訳(メタデータ) (2023-09-27T06:32:05Z) - Exploring Geometric Deep Learning For Precipitation Nowcasting [28.44612565923532]
そこで我々は,降水量予測のための幾何学的深層学習に基づく時間的グラフ畳み込みネットワーク(GCN)を提案する。
格子セル間の相互作用をシミュレートする隣接行列は、予測と接地真理画素値とのL1損失を最小化することにより、自動的に学習される。
トレント/アイタリー地域におけるレーダ反射率マップの配列について実験を行った。
論文 参考訳(メタデータ) (2023-09-11T21:14:55Z) - FFEINR: Flow Feature-Enhanced Implicit Neural Representation for
Spatio-temporal Super-Resolution [4.577685231084759]
本稿では,フローフィールドデータの超高分解能化のための特徴強調型ニューラルインシシット表現(FFEINR)を提案する。
モデル構造とサンプリング分解能の観点から、暗黙のニューラル表現を最大限に活用することができる。
FFEINRのトレーニングプロセスは、入力層に機能拡張を導入することで容易になる。
論文 参考訳(メタデータ) (2023-08-24T02:28:18Z) - HSurf-Net: Normal Estimation for 3D Point Clouds by Learning Hyper
Surfaces [54.77683371400133]
本稿では,ノイズと密度の変動のある点群から正規性を正確に予測できるHSurf-Netという新しい正規推定手法を提案する。
実験結果から, HSurf-Netは, 合成形状データセット上での最先端性能を実現することがわかった。
論文 参考訳(メタデータ) (2022-10-13T16:39:53Z) - Deep Learning Based Cloud Cover Parameterization for ICON [55.49957005291674]
我々は,実地域およびグローバルICONシミュレーションに基づいて,粗粒度データを用いたNNベースのクラウドカバーパラメータ化を訓練する。
グローバルに訓練されたNNは、地域シミュレーションのサブグリッドスケールのクラウドカバーを再現することができる。
我々は,コラムベースNNがグローバルから局所的な粗粒データに完全に一般化できない理由として,特定の湿度と雲氷上の過剰なエンハンシスを同定する。
論文 参考訳(メタデータ) (2021-12-21T16:10:45Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
GAN(Generative Adversarial Imputation Nets)とGANベースの技術は、教師なし機械学習手法として注目されている。
提案手法を Con Conval Generative Adversarial Imputation Nets (Conv-GAIN) と呼ぶ。
論文 参考訳(メタデータ) (2021-11-03T03:50:48Z) - Spatial Aggregation and Temporal Convolution Networks for Real-time
Kriging [3.4386226615580107]
SATCNは、モデル仕様を必要とせずに、様々なデータセットに対してテンポラリグを実行する、普遍的で柔軟なフレームワークである。
我々は時間的畳み込みネットワークによってノードをキャプチャし、モデルがさまざまなサイズのデータに対処できるようにする。
我々は、交通や気候記録を含む3つの実世界のデータセットについて広範な実験を行った。
論文 参考訳(メタデータ) (2021-09-24T18:43:07Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
歴史的文脈からビジュアルダイナミクスを学習するための新しいリカレントネットワークであるPredRNNを紹介する。
本手法は,3つの標準データセット上で高い競争結果が得られることを示す。
論文 参考訳(メタデータ) (2021-03-17T08:28:30Z) - A Point-Cloud Deep Learning Framework for Prediction of Fluid Flow
Fields on Irregular Geometries [62.28265459308354]
ネットワークは空間位置とCFD量のエンドツーエンドマッピングを学習する。
断面形状の異なるシリンダーを過ぎる非圧縮層状定常流を考察する。
ネットワークは従来のCFDの数百倍の速さで流れ場を予測する。
論文 参考訳(メタデータ) (2020-10-15T12:15:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。