論文の概要: Capability enhancement of the X-ray micro-tomography system via
ML-assisted approaches
- arxiv url: http://arxiv.org/abs/2402.05983v1
- Date: Thu, 8 Feb 2024 14:23:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-12 19:07:05.176822
- Title: Capability enhancement of the X-ray micro-tomography system via
ML-assisted approaches
- Title(参考訳): MLを用いたX線マイクロトモグラフィーシステムの機能向上
- Authors: Dhruvi Shah, Shruti Mehta, Ashish Agrawal, Shishir Purohit, Bhaskar
Chaudhury
- Abstract要約: X線マイクロCT画像におけるリングアーティファクトは、その正確な視覚的解釈と定量的解析における主要な原因の1つである。
本稿では、UNetにインスパイアされた畳み込みニューラルネットワーク(CNN)ベースのディープラーニング(DL)モデルと、リングアーティファクトを除去するためのスキップ接続を備えた一連のエンコーダとデコーダユニットを提案する。
- 参考スコア(独自算出の注目度): 0.8999666725996978
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ring artifacts in X-ray micro-CT images are one of the primary causes of
concern in their accurate visual interpretation and quantitative analysis. The
geometry of X-ray micro-CT scanners is similar to the medical CT machines,
except the sample is rotated with a stationary source and detector. The ring
artifacts are caused by a defect or non-linear responses in detector pixels
during the MicroCT data acquisition. Artifacts in MicroCT images can often be
so severe that the images are no longer useful for further analysis. Therefore,
it is essential to comprehend the causes of artifacts and potential solutions
to maximize image quality. This article presents a convolution neural network
(CNN)-based Deep Learning (DL) model inspired by UNet with a series of encoder
and decoder units with skip connections for removal of ring artifacts. The
proposed architecture has been evaluated using the Structural Similarity Index
Measure (SSIM) and Mean Squared Error (MSE). Additionally, the results are
compared with conventional filter-based non-ML techniques and are found to be
better than the latter.
- Abstract(参考訳): X線マイクロCT画像におけるリングアーティファクトは、その正確な視覚的解釈と定量的解析における主要な原因の1つである。
X線マイクロCTスキャナーの形状は医療用CT機に似ているが、サンプルは静止源と検出器で回転する。
リングアーティファクトは、MicroCTデータ取得中に検出器画素の欠陥または非線形応答によって引き起こされる。
MicroCT画像のアーティファクトは、しばしば非常に深刻であり、画像はそれ以上の分析には役に立たない。
したがって、画像品質を最大化するために、アーティファクトの原因と潜在的な解決策を理解することが不可欠である。
本稿では、UNetにインスパイアされた畳み込みニューラルネットワーク(CNN)ベースのディープラーニング(DL)モデルと、リングアーティファクトを除去するためのスキップ接続を備えた一連のエンコーダとデコーダユニットを提案する。
提案手法は,SSIM(Structure similarity Index Measure)とMSE(Mean Squared Error)を用いて評価されている。
さらに,従来のフィルタベース非ml技術と比較し,後者よりも優れた結果が得られた。
関連論文リスト
- Style transfer between Microscopy and Magnetic Resonance Imaging via
Generative Adversarial Network in small sample size settings [49.84018914962972]
磁気共鳴イメージング(MRI)のクロスモーダル増強と、同じ組織サンプルに基づく顕微鏡イメージングが期待できる。
コンディショナル・ジェネレーティブ・逆境ネットワーク (cGAN) アーキテクチャを用いて, コーパス・カロサムのMRI画像から顕微鏡組織像を生成する方法を検討した。
論文 参考訳(メタデータ) (2023-10-16T13:58:53Z) - K-Space-Aware Cross-Modality Score for Synthesized Neuroimage Quality
Assessment [71.27193056354741]
クロスモダリティな医用画像合成をどう評価するかという問題は、ほとんど解明されていない。
本稿では,この課題の進展を促すため,新しい指標K-CROSSを提案する。
K-CROSSは、トレーニング済みのマルチモードセグメンテーションネットワークを使用して、病変の位置を予測する。
論文 参考訳(メタデータ) (2023-07-10T01:26:48Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
深層学習(DL)モデルは、再構成画像を入力として、複数の疾患の診断において最先端のパフォーマンスを達成した。
DLモデルは、トレーニングとテストフェーズ間の入力データ分布の変化につながるため、さまざまなアーティファクトに敏感である。
本稿では,グループ正規化やレイヤ正規化といった他の正規化手法を用いて,画像のさまざまなアーチファクトに対して,モデル性能にロバスト性を注入することを提案する。
論文 参考訳(メタデータ) (2023-06-23T03:09:03Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
深層学習に基づくニューラルネットワークを用いて,OCTの軸運動とコロナ運動のアーチファクトを1つのスキャンで補正する。
実験結果から, 提案手法は動作アーチファクトを効果的に補正し, 誤差が他の方法よりも小さいことを示す。
論文 参考訳(メタデータ) (2023-05-27T03:55:19Z) - Geometric Constraints Enable Self-Supervised Sinogram Inpainting in
Sparse-View Tomography [7.416898042520079]
スパース角度トモグラフィースキャンは放射線を低減し、データ取得を加速するが、画像のアーチファクトやノイズに悩まされる。
既存の画像処理アルゴリズムはCT再構成の品質を復元することができるが、大きなトレーニングデータセットを必要とする場合が多い。
本研究は、勾配に基づく最適化により、欠落した射影ビューを最適化する自己教師付きプロジェクションインペインティング法を提案する。
論文 参考訳(メタデータ) (2023-02-13T15:15:18Z) - Orientation-Shared Convolution Representation for CT Metal Artifact
Learning [63.67718355820655]
X線CT(CT)スキャン中、患者を乗せた金属インプラントは、しばしば有害なアーティファクトに繋がる。
既存のディープラーニングベースの手法は、有望な再構築性能を得た。
本稿では,人工物の物理的事前構造に適応するために,配向型畳み込み表現戦略を提案する。
論文 参考訳(メタデータ) (2022-12-26T13:56:12Z) - Self-Attention Generative Adversarial Network for Iterative
Reconstruction of CT Images [0.9208007322096533]
本研究の目的は、ノイズや不完全なデータから高品質なCT画像を再構成するために、単一のニューラルネットワークを訓練することである。
ネットワークには、データ内の長距離依存関係をモデル化するセルフアテンションブロックが含まれている。
我々のアプローチはCIRCLE GANに匹敵する全体的なパフォーマンスを示し、他の2つのアプローチよりも優れています。
論文 参考訳(メタデータ) (2021-12-23T19:20:38Z) - Blind microscopy image denoising with a deep residual and multiscale
encoder/decoder network [0.0]
深層マルチスケール畳み込みエンコーダデコーダニューラルネットワークを提案する。
提案されたモデルは、PSNRの平均38.38、SSIMの0.98の57458画像セットに到達した。
論文 参考訳(メタデータ) (2021-05-01T14:54:57Z) - ShuffleUNet: Super resolution of diffusion-weighted MRIs using deep
learning [47.68307909984442]
SISR(Single Image Super-Resolution)は、1つの低解像度入力画像から高解像度(HR)の詳細を得る技術である。
ディープラーニングは、大きなデータセットから事前知識を抽出し、低解像度の画像から優れたMRI画像を生成します。
論文 参考訳(メタデータ) (2021-02-25T14:52:23Z) - Learning-based Defect Recognition for Quasi-Periodic Microscope Images [0.0]
原子分解能顕微鏡画像からの格子欠陥の検出を支援する半教師付き機械学習手法を提案する。
これには、画像パッチを欠陥または非欠陥として分類する畳み込みニューラルネットワーク、モデルとして1つの非欠陥パッチを選択するグラフベース、そして最後に自動生成された畳み込みフィルタバンクが含まれる。
このアルゴリズムは、III-V/Si結晶材料上でテストされ、異なる測定値に対してうまく評価され、非常に小さなトレーニングデータセットであっても有望な結果を示す。
論文 参考訳(メタデータ) (2020-07-02T18:00:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。