Taming the Bloch-Redfield equation: Recovering an accurate Lindblad equation for general open quantum systems
- URL: http://arxiv.org/abs/2402.06354v2
- Date: Thu, 30 May 2024 18:23:10 GMT
- Title: Taming the Bloch-Redfield equation: Recovering an accurate Lindblad equation for general open quantum systems
- Authors: Diego Fernández de la Pradilla, Esteban Moreno, Johannes Feist,
- Abstract summary: This study builds on previous efforts to transform the Bloch-Redfield framework into a mathematically robust Lindblad equation.
Our approach offers an effective and general procedure for obtaining a Lindblad equation, derived from a concrete physical environment.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Master equations play a pivotal role in investigating open quantum systems. In particular, the Bloch-Redfield equation stands out due to its relation to a concrete physical environment. However, without further approximations it does not lead to a Lindblad master equation that guarantees that the density matrix stays completely positive, which has raised some concerns regarding its use. This study builds on previous efforts to transform the Bloch-Redfield framework into a mathematically robust Lindblad equation, while fully preserving the effects that are lost within the secular approximation that is commonly used to guarantee positivity. These previous approaches introduce two potential deficiencies: the environment-induced energy shift can be non-Hermitian and some decay rates can be negative, violating the assumptions of Lindblad's theorem. Here, we propose and evaluate straightforward solutions to both problems. Our approach offers an effective and general procedure for obtaining a Lindblad equation, derived from a concrete physical environment, while mitigating the unphysical dynamics present in the Bloch-Redfield equation.
Related papers
- A Generic Method for Integrating Lindblad Master Equations [2.3498163541080683]
We propose a generic method for integrating Lindblad master equations.
In this method, the series is truncated, retaining a finite number of terms, and the iterative actions of Lindbladian on the density matrix follow the corresponding master equation.
arXiv Detail & Related papers (2024-12-18T09:38:55Z) - Solving the Lindblad equation with methods from computational fluid dynamics [0.0]
Liouvillian dynamics describes the evolution of a density operator in closed quantum systems.
One extension towards open quantum systems is provided by the Lindblad equation.
Main challenge is that analytical solutions for the Lindblad equation are only obtained for harmonic system potentials or two-level systems.
arXiv Detail & Related papers (2024-10-14T14:24:23Z) - Full- and low-rank exponential Euler integrators for the Lindblad equation [2.5676905118007407]
The Lindblad equation is a widely used quantum master equation to model the dynamical evolution of open quantum systems.
Full-rank exponential Euler and low-rank exponential Euler are developed for approximating the Lindblad equation that preserve positivity and trace unconditionally.
arXiv Detail & Related papers (2024-08-24T15:11:28Z) - Lindbladian reverse engineering for general non-equilibrium steady states: A scalable null-space approach [49.1574468325115]
We introduce a method for reconstructing the corresponding Lindbaldian master equation given any target NESS.
The kernel (null-space) of the correlation matrix corresponds to Lindbladian solutions.
We illustrate the method in different systems, ranging from bosonic Gaussian to dissipative-driven collective spins.
arXiv Detail & Related papers (2024-08-09T19:00:18Z) - Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - Third quantization of open quantum systems: new dissipative symmetries
and connections to phase-space and Keldysh field theory formulations [77.34726150561087]
We reformulate the technique of third quantization in a way that explicitly connects all three methods.
We first show that our formulation reveals a fundamental dissipative symmetry present in all quadratic bosonic or fermionic Lindbladians.
For bosons, we then show that the Wigner function and the characteristic function can be thought of as ''wavefunctions'' of the density matrix.
arXiv Detail & Related papers (2023-02-27T18:56:40Z) - Canonically consistent quantum master equation [68.8204255655161]
We put forth a new class of quantum master equations that correctly reproduce the state of an open quantum system beyond the infinitesimally weak system-bath coupling limit.
Our method is based on incorporating the knowledge of the reduced steady state into its dynamics.
arXiv Detail & Related papers (2022-05-25T15:22:52Z) - Fundamental limitations in Lindblad descriptions of systems weakly
coupled to baths [0.0]
We write down a Markovian quantum master equation in Lindblad form to describe a system with multiple degrees of freedom.
We argue that one or more of these conditions will generically be violated in all the weak system-bath-coupling Lindblad descriptions.
arXiv Detail & Related papers (2021-05-25T17:17:38Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - Assessment of weak-coupling approximations on a driven two-level system
under dissipation [58.720142291102135]
We study a driven qubit through the numerically exact and non-perturbative method known as the Liouville-von equation with dissipation.
We propose a metric that may be used in experiments to map the regime of validity of the Lindblad equation in predicting the steady state of the driven qubit.
arXiv Detail & Related papers (2020-11-11T22:45:57Z) - Universal Lindblad equation for open quantum systems [0.0]
We develop a Markovian master equation in the Lindblad form for studying quantum many-body systems.
The validity of the master equation is based entirely on properties of the bath and the system-bath coupling.
We show how our method can be applied to static or driven quantum many-body systems.
arXiv Detail & Related papers (2020-04-03T11:07:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.