A Generic Method for Integrating Lindblad Master Equations
- URL: http://arxiv.org/abs/2412.13661v1
- Date: Wed, 18 Dec 2024 09:38:55 GMT
- Title: A Generic Method for Integrating Lindblad Master Equations
- Authors: Jiayin Gu, Fan Zhang,
- Abstract summary: We propose a generic method for integrating Lindblad master equations.
In this method, the series is truncated, retaining a finite number of terms, and the iterative actions of Lindbladian on the density matrix follow the corresponding master equation.
- Score: 2.3498163541080683
- License:
- Abstract: The time evolution of Markovian open quantum systems is governed by Lindblad master equations, whose solution can be formally written as the Lindbladian exponential acting on the initial density matrix. By expanding this Lindbladian exponential into the Taylor series, we propose a generic method for integrating Lindblad master equations. In this method, the series is truncated, retaining a finite number of terms, and the iterative actions of Lindbladian on the density matrix follow the corresponding master equation. While mathematically equivalent to the widely-used vectorization method, our method offers significant improvements in the numerical efficiency, especially for systems with many degrees of freedom. Moreover, our proposed method can be integrated seamlessly with tensor networks. Two illustrative examples, a two-level system exhibiting damped Rabi oscillations and a driven dissipative Heisenberg chain, are used to demonstrate the validity and effectiveness of our method.
Related papers
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
This work proposes a novel method for estimating both drift and diffusion coefficients of continuous, multidimensional, nonlinear controlled differential equations with non-uniform diffusion.
We provide strong theoretical guarantees, including finite-sample bounds for (L2), (Linfty), and risk metrics, with learning rates adaptive to coefficients' regularity.
Our method is available as an open-source Python library.
arXiv Detail & Related papers (2024-11-04T11:09:58Z) - Solving the Lindblad equation with methods from computational fluid dynamics [0.0]
Liouvillian dynamics describes the evolution of a density operator in closed quantum systems.
One extension towards open quantum systems is provided by the Lindblad equation.
Main challenge is that analytical solutions for the Lindblad equation are only obtained for harmonic system potentials or two-level systems.
arXiv Detail & Related papers (2024-10-14T14:24:23Z) - Exact solution of the master equation for interacting quantized fields at finite temperature decay [0.0]
We analyze the Markovian dynamics of a quantum system involving the interaction of two quantized fields at finite temperature decay.
We reformulate the Lindblad master equation into a von Neumann-like equation with an effective non-Hermitian Hamiltonian.
This method provides a framework to calculate the evolution of any initial state in a fully quantum regime.
arXiv Detail & Related papers (2024-10-11T00:21:54Z) - Full- and low-rank exponential Euler integrators for the Lindblad equation [2.5676905118007407]
The Lindblad equation is a widely used quantum master equation to model the dynamical evolution of open quantum systems.
Full-rank exponential Euler and low-rank exponential Euler are developed for approximating the Lindblad equation that preserve positivity and trace unconditionally.
arXiv Detail & Related papers (2024-08-24T15:11:28Z) - Lindbladian reverse engineering for general non-equilibrium steady states: A scalable null-space approach [49.1574468325115]
We introduce a method for reconstructing the corresponding Lindbaldian master equation given any target NESS.
The kernel (null-space) of the correlation matrix corresponds to Lindbladian solutions.
We illustrate the method in different systems, ranging from bosonic Gaussian to dissipative-driven collective spins.
arXiv Detail & Related papers (2024-08-09T19:00:18Z) - Third quantization of open quantum systems: new dissipative symmetries
and connections to phase-space and Keldysh field theory formulations [77.34726150561087]
We reformulate the technique of third quantization in a way that explicitly connects all three methods.
We first show that our formulation reveals a fundamental dissipative symmetry present in all quadratic bosonic or fermionic Lindbladians.
For bosons, we then show that the Wigner function and the characteristic function can be thought of as ''wavefunctions'' of the density matrix.
arXiv Detail & Related papers (2023-02-27T18:56:40Z) - Non-diagonal Lindblad master equations in quantum reservoir engineering [0.0]
We present a set of dynamical equations for the first and second moments of canonical variables for bosonic and fermionic linear Gaussian systems.
Our method is efficient and allows one to obtain analytical solutions for the steady state.
Our exploration yields a surprising byproduct: the Duan criterion, commonly applied to bosonic systems for verification of entanglement, is found to be equally valid for fermionic systems.
arXiv Detail & Related papers (2021-11-07T09:55:04Z) - Direct solution of multiple excitations in a matrix product state with
block Lanczos [62.997667081978825]
We introduce the multi-targeted density matrix renormalization group method that acts on a bundled matrix product state, holding many excitations.
A large number of excitations can be obtained at a small bond dimension with highly reliable local observables throughout the chain.
arXiv Detail & Related papers (2021-09-16T18:36:36Z) - A Discrete Variational Derivation of Accelerated Methods in Optimization [68.8204255655161]
We introduce variational which allow us to derive different methods for optimization.
We derive two families of optimization methods in one-to-one correspondence.
The preservation of symplecticity of autonomous systems occurs here solely on the fibers.
arXiv Detail & Related papers (2021-06-04T20:21:53Z) - Dissipative flow equations [62.997667081978825]
We generalize the theory of flow equations to open quantum systems focusing on Lindblad master equations.
We first test our dissipative flow equations on a generic matrix and on a physical problem with a driven-dissipative single fermionic mode.
arXiv Detail & Related papers (2020-07-23T14:47:17Z) - Universal Lindblad equation for open quantum systems [0.0]
We develop a Markovian master equation in the Lindblad form for studying quantum many-body systems.
The validity of the master equation is based entirely on properties of the bath and the system-bath coupling.
We show how our method can be applied to static or driven quantum many-body systems.
arXiv Detail & Related papers (2020-04-03T11:07:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.