Scalable Interactive Machine Learning for Future Command and Control
- URL: http://arxiv.org/abs/2402.06501v2
- Date: Thu, 28 Mar 2024 15:17:01 GMT
- Title: Scalable Interactive Machine Learning for Future Command and Control
- Authors: Anna Madison, Ellen Novoseller, Vinicius G. Goecks, Benjamin T. Files, Nicholas Waytowich, Alfred Yu, Vernon J. Lawhern, Steven Thurman, Christopher Kelshaw, Kaleb McDowell,
- Abstract summary: Future warfare will require Command and Control (C2) personnel to make decisions at shrinking timescales.
integration of artificial and human intelligence holds the potential to revolutionize the C2 operations process.
This paper identifies several gaps in state-of-the-art science and technology that future work should address to extend these approaches to function in complex C2 contexts.
- Score: 1.762977457426215
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Future warfare will require Command and Control (C2) personnel to make decisions at shrinking timescales in complex and potentially ill-defined situations. Given the need for robust decision-making processes and decision-support tools, integration of artificial and human intelligence holds the potential to revolutionize the C2 operations process to ensure adaptability and efficiency in rapidly changing operational environments. We propose to leverage recent promising breakthroughs in interactive machine learning, in which humans can cooperate with machine learning algorithms to guide machine learning algorithm behavior. This paper identifies several gaps in state-of-the-art science and technology that future work should address to extend these approaches to function in complex C2 contexts. In particular, we describe three research focus areas that together, aim to enable scalable interactive machine learning (SIML): 1) developing human-AI interaction algorithms to enable planning in complex, dynamic situations; 2) fostering resilient human-AI teams through optimizing roles, configurations, and trust; and 3) scaling algorithms and human-AI teams for flexibility across a range of potential contexts and situations.
Related papers
- AI-Driven Human-Autonomy Teaming in Tactical Operations: Proposed Framework, Challenges, and Future Directions [10.16399860867284]
Artificial Intelligence (AI) techniques are transforming tactical operations by augmenting human decision-making capabilities.
This paper explores AI-driven Human-Autonomy Teaming (HAT) as a transformative approach.
We propose a comprehensive framework that addresses the key components of AI-driven HAT.
arXiv Detail & Related papers (2024-10-28T15:05:16Z) - Robotic warehousing operations: a learn-then-optimize approach to large-scale neighborhood search [84.39855372157616]
This paper supports robotic parts-to-picker operations in warehousing by optimizing order-workstation assignments, item-pod assignments and the schedule of order fulfillment at workstations.
We solve it via large-scale neighborhood search, with a novel learn-then-optimize approach to subproblem generation.
In collaboration with Amazon Robotics, we show that our model and algorithm generate much stronger solutions for practical problems than state-of-the-art approaches.
arXiv Detail & Related papers (2024-08-29T20:22:22Z) - Commonsense Reasoning for Legged Robot Adaptation with Vision-Language Models [81.55156507635286]
Legged robots are physically capable of navigating a diverse variety of environments and overcoming a wide range of obstructions.
Current learning methods often struggle with generalization to the long tail of unexpected situations without heavy human supervision.
We propose a system, VLM-Predictive Control (VLM-PC), combining two key components that we find to be crucial for eliciting on-the-fly, adaptive behavior selection.
arXiv Detail & Related papers (2024-07-02T21:00:30Z) - Learning Manipulation Tasks in Dynamic and Shared 3D Spaces [2.4892784882130132]
Learning automated pick-and-place operations can be efficiently done by introducing collaborative autonomous systems.
In this paper, we propose a deep reinforcement learning strategy to learn the place task of multi-categorical items.
arXiv Detail & Related papers (2024-04-26T19:40:19Z) - Embodied Neuromorphic Artificial Intelligence for Robotics: Perspectives, Challenges, and Research Development Stack [7.253801704452419]
Recent advances in neuromorphic computing with Spiking Neural Networks (SNN) have demonstrated the potential to enable the embodied intelligence for robotics.
This paper will discuss how we can enable embodied neuromorphic AI for robotic systems through our perspectives.
arXiv Detail & Related papers (2024-04-04T09:52:22Z) - A2C: A Modular Multi-stage Collaborative Decision Framework for Human-AI
Teams [19.91751748232295]
A2C is a multi-stage collaborative decision framework designed to enable robust decision-making within human-AI teams.
It incorporates AI systems trained to recognise uncertainty in their decisions and defer to human experts when needed.
arXiv Detail & Related papers (2024-01-25T02:31:52Z) - Brain-Inspired Computational Intelligence via Predictive Coding [89.6335791546526]
Predictive coding (PC) has shown promising performance in machine intelligence tasks.
PC can model information processing in different brain areas, can be used in cognitive control and robotics.
arXiv Detail & Related papers (2023-08-15T16:37:16Z) - Bridging Active Exploration and Uncertainty-Aware Deployment Using
Probabilistic Ensemble Neural Network Dynamics [11.946807588018595]
This paper presents a unified model-based reinforcement learning framework that bridges active exploration and uncertainty-aware deployment.
The two opposing tasks of exploration and deployment are optimized through state-of-the-art sampling-based MPC.
We conduct experiments on both autonomous vehicles and wheeled robots, showing promising results for both exploration and deployment.
arXiv Detail & Related papers (2023-05-20T17:20:12Z) - Human-Robot Collaboration and Machine Learning: A Systematic Review of
Recent Research [69.48907856390834]
Human-robot collaboration (HRC) is the approach that explores the interaction between a human and a robot.
This paper proposes a thorough literature review of the use of machine learning techniques in the context of HRC.
arXiv Detail & Related papers (2021-10-14T15:14:33Z) - Distributed and Democratized Learning: Philosophy and Research
Challenges [80.39805582015133]
We propose a novel design philosophy called democratized learning (Dem-AI)
Inspired by the societal groups of humans, the specialized groups of learning agents in the proposed Dem-AI system are self-organized in a hierarchical structure to collectively perform learning tasks more efficiently.
We present a reference design as a guideline to realize future Dem-AI systems, inspired by various interdisciplinary fields.
arXiv Detail & Related papers (2020-03-18T08:45:10Z) - The Chef's Hat Simulation Environment for Reinforcement-Learning-Based
Agents [54.63186041942257]
We propose a virtual simulation environment that implements the Chef's Hat card game, designed to be used in Human-Robot Interaction scenarios.
This paper provides a controllable and reproducible scenario for reinforcement-learning algorithms.
arXiv Detail & Related papers (2020-03-12T15:52:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.