Introspective Planning: Aligning Robots' Uncertainty with Inherent Task Ambiguity
- URL: http://arxiv.org/abs/2402.06529v3
- Date: Tue, 4 Jun 2024 02:25:30 GMT
- Title: Introspective Planning: Aligning Robots' Uncertainty with Inherent Task Ambiguity
- Authors: Kaiqu Liang, Zixu Zhang, Jaime Fernández Fisac,
- Abstract summary: Large language models (LLMs) exhibit advanced reasoning skills, enabling robots to comprehend natural language instructions.
LLMs hallucination may result in robots executing plans that are misaligned with user goals or, in extreme cases, unsafe.
This paper explores the concept of introspective planning as a systematic method for guiding LLMs in forming uncertainty-aware plans for robotic task execution.
- Score: 0.659529078336196
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) exhibit advanced reasoning skills, enabling robots to comprehend natural language instructions and strategically plan high-level actions through proper grounding. However, LLM hallucination may result in robots confidently executing plans that are misaligned with user goals or, in extreme cases, unsafe. Additionally, inherent ambiguity in natural language instructions can induce task uncertainty, particularly in situations where multiple valid options exist. To address this issue, LLMs must identify such uncertainty and proactively seek clarification. This paper explores the concept of introspective planning as a systematic method for guiding LLMs in forming uncertainty--aware plans for robotic task execution without the need for fine-tuning. We investigate uncertainty quantification in task-level robot planning and demonstrate that introspection significantly improves both success rates and safety compared to state-of-the-art LLM-based planning approaches. Furthermore, we assess the effectiveness of introspective planning in conjunction with conformal prediction, revealing that this combination yields tighter confidence bounds, thereby maintaining statistical success guarantees with fewer superfluous user clarification queries. Code is available at https://github.com/kevinliang888/IntroPlan.
Related papers
- Planning in the Dark: LLM-Symbolic Planning Pipeline without Experts [34.636688162807836]
Large Language Models (LLMs) have shown promise in solving natural language-described planning tasks, but their direct use often leads to inconsistent reasoning and hallucination.
We propose a novel approach that constructs an action schema library to generate multiple candidates, accounting for the diverse possible interpretations of natural language descriptions.
Experiments showed our pipeline maintains superiority in planning over the direct LLM planning approach.
arXiv Detail & Related papers (2024-09-24T09:33:12Z) - Evaluating Uncertainty-based Failure Detection for Closed-Loop LLM Planners [10.746821861109176]
Large Language Models (LLMs) have witnessed remarkable performance as zero-shot task planners for robotic tasks.
However, the open-loop nature of previous works makes LLM-based planning error-prone and fragile.
In this work, we introduce a framework for closed-loop LLM-based planning called KnowLoop, backed by an uncertainty-based MLLMs failure detector.
arXiv Detail & Related papers (2024-06-01T12:52:06Z) - Tuning-Free Accountable Intervention for LLM Deployment -- A
Metacognitive Approach [55.613461060997004]
Large Language Models (LLMs) have catalyzed transformative advances across a spectrum of natural language processing tasks.
We propose an innovative textitmetacognitive approach, dubbed textbfCLEAR, to equip LLMs with capabilities for self-aware error identification and correction.
arXiv Detail & Related papers (2024-03-08T19:18:53Z) - KnowAgent: Knowledge-Augmented Planning for LLM-Based Agents [54.09074527006576]
Large Language Models (LLMs) have demonstrated great potential in complex reasoning tasks, yet they fall short when tackling more sophisticated challenges.
This inadequacy primarily stems from the lack of built-in action knowledge in language agents.
We introduce KnowAgent, a novel approach designed to enhance the planning capabilities of LLMs by incorporating explicit action knowledge.
arXiv Detail & Related papers (2024-03-05T16:39:12Z) - Safe Task Planning for Language-Instructed Multi-Robot Systems using Conformal Prediction [11.614036749291216]
We introduce a new distributed multi-robot planner, S-ATLAS for Safe plAnning for Teams of Language-instructed AgentS, that is capable of achieving user-defined mission success rates.
We show, both theoretically and empirically, that the proposed planner can achieve user-specified task success rates while minimizing the overall number of help requests.
arXiv Detail & Related papers (2024-02-23T15:02:44Z) - Consolidating Trees of Robotic Plans Generated Using Large Language
Models to Improve Reliability [6.4111574364474215]
The inherent probabilistic nature of Large Language Models (LLMs) introduces an element of unpredictability.
This paper introduces an innovative approach aims to generate correct and optimal robotic task plans for diverse real-world demands and scenarios.
arXiv Detail & Related papers (2024-01-15T18:01:59Z) - LLM-Assist: Enhancing Closed-Loop Planning with Language-Based Reasoning [65.86754998249224]
We develop a novel hybrid planner that leverages a conventional rule-based planner in conjunction with an LLM-based planner.
Our approach navigates complex scenarios which existing planners struggle with, produces well-reasoned outputs while also remaining grounded through working alongside the rule-based approach.
arXiv Detail & Related papers (2023-12-30T02:53:45Z) - Robots That Ask For Help: Uncertainty Alignment for Large Language Model
Planners [85.03486419424647]
KnowNo is a framework for measuring and aligning the uncertainty of large language models.
KnowNo builds on the theory of conformal prediction to provide statistical guarantees on task completion.
arXiv Detail & Related papers (2023-07-04T21:25:12Z) - Neuro-Symbolic Causal Language Planning with Commonsense Prompting [67.06667162430118]
Language planning aims to implement complex high-level goals by decomposition into simpler low-level steps.
Previous methods require either manual exemplars or annotated programs to acquire such ability from large language models.
This paper proposes Neuro-Symbolic Causal Language Planner (CLAP) that elicits procedural knowledge from the LLMs with commonsense-infused prompting.
arXiv Detail & Related papers (2022-06-06T22:09:52Z) - Language Models as Zero-Shot Planners: Extracting Actionable Knowledge
for Embodied Agents [111.33545170562337]
We investigate the possibility of grounding high-level tasks, expressed in natural language, to a chosen set of actionable steps.
We find that if pre-trained LMs are large enough and prompted appropriately, they can effectively decompose high-level tasks into low-level plans.
We propose a procedure that conditions on existing demonstrations and semantically translates the plans to admissible actions.
arXiv Detail & Related papers (2022-01-18T18:59:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.