Why engineers are right to avoid the quantum reality offered by the
orthodox theory?
- URL: http://arxiv.org/abs/2402.06851v1
- Date: Sat, 10 Feb 2024 00:55:48 GMT
- Title: Why engineers are right to avoid the quantum reality offered by the
orthodox theory?
- Authors: X. Oriols and D. K. Ferry
- Abstract summary: A proper knowledge of the reality of a physical theory is important to get an understanding of empirical phenomena.
We argue that engineers are actually led to the natural quantum reality offered by alternative approaches.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A proper knowledge of the reality of a physical theory is important to get an
understanding of empirical phenomena. Despite its extraordinary predictive
successes, the orthodox (also known as the Copenhagen) theory provides an
indigestible definition of quantum reality: objects (such as electrons) become
part of a nebulous many-particle wave function with no properties at all,
unless the property is explicitly measured. To make matters worse, orthodox
theory does not define measurements in a clear way. This view of reality is
foreign to most modern engineers who assume that quantum objects, like
classical objects, always have real properties, independent of any measurement.
Despite being contrary to the orthodox theory, the intuition of engineers is
not in conflict with other quantum theories, where the observer plays no
fundamental role. Good quantum intuition needs to be based on a correct
knowledge of the fundamental elements of the quantum theory that is being used.
We argue that engineers are actually led to the natural quantum reality offered
by these alternative approaches.
Related papers
- Observation of Quantum Darwinism and the Origin of Classicality with Superconducting Circuits [9.09683951826704]
How can we rationalize everyday classical observations from an inherently quantum world?
Quantum Darwinism offers a compelling framework to explain this emergence of classicality.
We observe the highly structured branching quantum states that support classicality and the saturation of quantum mutual information.
arXiv Detail & Related papers (2025-04-01T13:33:32Z) - Graph structure of quantum mechanics [3.9474648943255937]
The quantum mechanics is proved to admit no hidden-variable in 1960s, which means the quantum systems are contextual.
We develop the approach of partial Boolean algebra to characterize the contextuality theory with local consistency and exclusivity.
Our conclusions indicate that the quantum mechanics is a graph-structured combination of multiple hidden-variable theories, and provide a precise mathematical framework for quantum contextuality.
arXiv Detail & Related papers (2024-11-27T08:49:12Z) - Towards Noncommutative Quantum Reality [0.0]
The implications of the physical theory of quantum mechanics on the question of realism is much a subject of sustaining interest.
We give here a picture of quantum mechanics as the basic theory for nonrelativistic' particle dynamics.
The key is to fully embrace the noncommutativity of the theory and see it as a notion about the reality of physical quantities.
arXiv Detail & Related papers (2022-02-19T10:27:23Z) - Quantum realism: axiomatization and quantification [77.34726150561087]
We build an axiomatization for quantum realism -- a notion of realism compatible with quantum theory.
We explicitly construct some classes of entropic quantifiers that are shown to satisfy almost all of the proposed axioms.
arXiv Detail & Related papers (2021-10-10T18:08:42Z) - Testing quantum theory with thought experiments [4.847980206213335]
How should one model systems that include agents who are themselves using quantum theory?
We give a state-of-the-art overview on quantum thought experiments involving observers.
arXiv Detail & Related papers (2021-06-09T18:08:23Z) - Demystifying Quantum Mechanics [0.0]
We discuss the concepts of physical reality imposed by quantum mechanics, the role of the observer, prediction limits, a definition of collapse, and how to deal with correlated states.
The discussion is carried out within the framework of accepting that there is in fact nothing important missing, rather we are just restricted by the limitations imposed by quantum mechanics.
arXiv Detail & Related papers (2021-06-03T22:32:11Z) - Gentle Measurement as a Principle of Quantum Theory [9.137554315375919]
We propose the gentle measurement principle (GMP) as one of the principles at the foundation of quantum mechanics.
We show, within the framework of general probabilistic theories, that GMP imposes strong restrictions on the law of physics.
arXiv Detail & Related papers (2021-03-28T11:59:49Z) - Ruling out real-valued standard formalism of quantum theory [19.015836913247288]
A quantum game has been developed to distinguish standard quantum theory from its real-number analog.
We experimentally implement the quantum game based on entanglement swapping with a state-of-the-art fidelity of 0.952(1).
Our results disprove the real-number formulation and establish the indispensable role of complex numbers in the standard quantum theory.
arXiv Detail & Related papers (2021-03-15T03:56:13Z) - Operational Resource Theory of Imaginarity [48.7576911714538]
We show that quantum states are easier to create and manipulate if they only have real elements.
As an application, we show that imaginarity plays a crucial role for state discrimination.
arXiv Detail & Related papers (2020-07-29T14:03:38Z) - Is the standard quantum mechanics a completely nondeterministic theory? [0.0]
It is argued that although quantum theory isn't an absolutely deterministic theory, it is partially deterministic.
The argument is based on the conceptual meaning of determinism and by means of some well-known phenomena in the quantum world.
arXiv Detail & Related papers (2020-07-04T14:48:13Z) - Quantum resource covariance [0.0]
Since the dawn of quantum mechanics there is no consensus on what the theory is all about.
We construct a theoretical framework within which a given combination of quantum resources is shown to be a Galilean invariant.
We show that the notion of physical reality implied by quantum mechanics is not absolute.
arXiv Detail & Related papers (2020-05-19T17:34:11Z) - The Uncertainty Principle of Quantum Processes [6.2997667081978825]
We show that the uncertainty principle can be reformulated to include process-measurements that are performed on quantum channels.
We obtain expressions that generalize the Maassen-Uffink uncertainty relation and the universal uncertainty relations from quantum states to quantum channels.
arXiv Detail & Related papers (2020-04-11T06:03:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.