論文の概要: Non-autoregressive Generative Models for Reranking Recommendation
- arxiv url: http://arxiv.org/abs/2402.06871v3
- Date: Tue, 18 Jun 2024 07:45:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-20 04:15:24.208689
- Title: Non-autoregressive Generative Models for Reranking Recommendation
- Title(参考訳): 推薦の優先順位付けのための非自己回帰生成モデル
- Authors: Yuxin Ren, Qiya Yang, Yichun Wu, Wei Xu, Yalong Wang, Zhiqiang Zhang,
- Abstract要約: 推薦システムでは、項目間のリスト内相関をモデル化することで、リランクが重要な役割を果たす。
本研究では, 効率と効率性を高めるために, 提案するレコメンデーション(NAR4Rec)の再評価のための非自己回帰生成モデルを提案する。
NAR4Recは、毎日3億人のアクティブユーザーがいる人気ビデオアプリKuaishouに完全にデプロイされている。
- 参考スコア(独自算出の注目度): 9.854541524740549
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Contemporary recommendation systems are designed to meet users' needs by delivering tailored lists of items that align with their specific demands or interests. In a multi-stage recommendation system, reranking plays a crucial role by modeling the intra-list correlations among items. The key challenge of reranking lies in the exploration of optimal sequences within the combinatorial space of permutations. Recent research proposes a generator-evaluator learning paradigm, where the generator generates multiple feasible sequences and the evaluator picks out the best sequence based on the estimated listwise score. The generator is of vital importance, and generative models are well-suited for the generator function. Current generative models employ an autoregressive strategy for sequence generation. However, deploying autoregressive models in real-time industrial systems is challenging. To address these issues, we propose a Non-AutoRegressive generative model for reranking Recommendation (NAR4Rec) designed to enhance efficiency and effectiveness. To tackle challenges such as sparse training samples and dynamic candidates, we introduce a matching model. Considering the diverse nature of user feedback, we employ a sequence-level unlikelihood training objective to differentiate feasible sequences from unfeasible ones. Additionally, to overcome the lack of dependency modeling in non-autoregressive models regarding target items, we introduce contrastive decoding to capture correlations among these items. Extensive offline experiments validate the superior performance of NAR4Rec over state-of-the-art reranking methods. Online A/B tests reveal that NAR4Rec significantly enhances the user experience. Furthermore, NAR4Rec has been fully deployed in a popular video app Kuaishou with over 300 million daily active users.
- Abstract(参考訳): コンテンポラリーレコメンデーションシステムは、ユーザのニーズを満たすために、特定の要求や関心に合わせたアイテムの適切なリストを提供することによって設計されている。
多段階レコメンデーションシステムでは、項目間のリスト内相関をモデル化することで、リランクが重要な役割を果たす。
再階の鍵となる課題は、置換の組合せ空間内の最適な列の探索である。
近年の研究では、ジェネレータが複数の実行可能なシーケンスを生成し、評価器が推定されたリストワイズスコアに基づいて最適なシーケンスを選択する、ジェネレータ-評価器学習パラダイムを提案する。
ジェネレータは非常に重要であり、生成モデルはジェネレータ機能に適している。
現在の生成モデルは、シーケンス生成のための自己回帰戦略を採用している。
しかし、リアルタイム産業システムに自己回帰モデルを展開することは困難である。
これらの課題に対処するため,効率と有効性を高めるために,提案するレコメンデーション(NAR4Rec)の再評価のための非自己回帰生成モデルを提案する。
スパーストレーニングサンプルや動的候補といった課題に対処するために,マッチングモデルを導入する。
ユーザフィードバックの多様性を考えると、実現不可能なシークエンスと不可能なシークエンスを区別するために、シークエンスレベルの相違したトレーニング目標を用いる。
さらに,対象項目に関する非自己回帰モデルにおける依存性モデリングの欠如を克服するため,これらの項目間の相関を捉えるためにコントラッシブデコーディングを導入する。
大規模なオフライン実験により、NAR4Recは最先端の再ランク法よりも優れた性能を示す。
オンラインA/Bテストでは、NAR4Recはユーザーエクスペリエンスを大幅に向上させる。
さらに、NAR4Recは、毎日3億人以上のアクティブユーザーがいる人気ビデオアプリKuaishouに完全にデプロイされている。
関連論文リスト
- Diffusion Augmentation for Sequential Recommendation [47.43402785097255]
本稿では,より高品質な生成のためのDiffuASR(Diffusion Augmentation for Sequential Recommendation)を提案する。
DiffuASRによる強化データセットは、複雑なトレーニング手順なしで、シーケンシャルレコメンデーションモデルを直接トレーニングするために使用することができる。
3つの逐次レコメンデーションモデルを用いた3つの実世界のデータセットに関する広範な実験を行った。
論文 参考訳(メタデータ) (2023-09-22T13:31:34Z) - MISSRec: Pre-training and Transferring Multi-modal Interest-aware
Sequence Representation for Recommendation [61.45986275328629]
逐次レコメンデーションのためのマルチモーダル事前学習・転送学習フレームワークであるMISSRecを提案する。
ユーザ側ではトランスフォーマーベースのエンコーダデコーダモデルを設計し、コンテキストエンコーダがシーケンスレベルのマルチモーダルユーザ興味を捉えることを学習する。
候補項目側では,ユーザ適応項目表現を生成するために動的融合モジュールを採用する。
論文 参考訳(メタデータ) (2023-08-22T04:06:56Z) - SequenceMatch: Imitation Learning for Autoregressive Sequence Modelling with Backtracking [60.109453252858806]
MLE(Maxum-likelihood)の目的は、高品質なシーケンスを自動回帰的に生成する下流のユースケースと一致しない。
我々は、模倣学習(IL)問題としてシーケンス生成を定式化する。
これにより、自己回帰モデルによって生成されるシーケンスの分布とデータセットからのシーケンスとの差異を最小化できる。
得られた手法であるSequenceMatchは、敵の訓練やアーキテクチャの変更なしに実装できる。
論文 参考訳(メタデータ) (2023-06-08T17:59:58Z) - Conditional Denoising Diffusion for Sequential Recommendation [62.127862728308045]
GAN(Generative Adversarial Networks)とVAE(VAE)の2つの顕著な生成モデル
GANは不安定な最適化に苦しむ一方、VAEは後続の崩壊と過度に平らな世代である。
本稿では,シーケンスエンコーダ,クロスアテンティブデノナイジングデコーダ,ステップワイズディフューザを含む条件付きデノナイジング拡散モデルを提案する。
論文 参考訳(メタデータ) (2023-04-22T15:32:59Z) - Generative Slate Recommendation with Reinforcement Learning [49.75985313698214]
強化学習アルゴリズムは、レコメンデータシステムのユーザエンゲージメントを最適化するために使用することができる。
しかし、RLアプローチはスレートレコメンデーションシナリオでは難解である。
この設定では、アクションはアイテムの組み合わせを含むことができるスレートに対応する。
本研究では,変分オートエンコーダによって学習された連続低次元ラテント空間におけるスレートの符号化を提案する。
我々は、(i)以前の作業で要求される仮定を緩和し、(ii)完全なスレートをモデル化することで、アクション選択の品質を向上させることができる。
論文 参考訳(メタデータ) (2023-01-20T15:28:09Z) - DORE: Document Ordered Relation Extraction based on Generative Framework [56.537386636819626]
本稿では,既存のDocREモデルの根本原因について検討する。
本稿では,モデルが学習しやすく,決定論的な関係行列から記号列と順序列を生成することを提案する。
4つのデータセットに対する実験結果から,提案手法は生成型DocREモデルの性能を向上させることができることが示された。
論文 参考訳(メタデータ) (2022-10-28T11:18:10Z) - Contrastive Self-supervised Sequential Recommendation with Robust
Augmentation [101.25762166231904]
Sequential Recommendation Describes a set of technique to model dynamic user behavior to order to predict future interaction in sequence user data。
データスパーシリティやノイズの多いデータなど、古くて新しい問題はまだ残っている。
逐次レコメンデーション(CoSeRec)のためのコントラスト型自己監督学習を提案する。
論文 参考訳(メタデータ) (2021-08-14T07:15:25Z) - Sequence Adaptation via Reinforcement Learning in Recommender Systems [8.909115457491522]
そこで我々は,SARモデルを提案する。SARモデルは,ユーザとイテムの相互作用のシーケンス長をパーソナライズされた方法で調整する。
さらに,逐次レコメンデーションの精度を批評家ネットワークの予測累積報酬と整合させるために,共同損失関数を最適化する。
実世界の4つのデータセットに対する実験的な評価は,提案モデルがいくつかのベースラインアプローチよりも優れていることを示す。
論文 参考訳(メタデータ) (2021-07-31T13:56:46Z) - Regularising Inverse Problems with Generative Machine Learning Models [9.971351129098336]
逆問題に対する変分正規化手法における生成モデルの利用を検討する。
生成正規化の成功は生成モデルの品質に依存する。
生成モデルの能力に大きく依存することから, 生成器の精度に制限された解が, 生成器の精度に大きく依存していることが示唆された。
論文 参考訳(メタデータ) (2021-07-22T15:47:36Z) - Adversarial and Contrastive Variational Autoencoder for Sequential
Recommendation [25.37244686572865]
本稿では、逐次レコメンデーションのためのAdversarial and Contrastive Variational Autoencoder (ACVAE) と呼ばれる新しい手法を提案する。
まず,本モデルが高品質な潜在変数を生成することを可能にするadversarial variational bayesフレームワークの下で,シーケンス生成のためのadversarial trainingを導入する。
さらに、シーケンスをエンコードする場合、シーケンス内のグローバルおよびローカルの関係をキャプチャするために、繰り返しおよび畳み込み構造を適用します。
論文 参考訳(メタデータ) (2021-03-19T09:01:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。