論文の概要: Self-Consistent Conformal Prediction
- arxiv url: http://arxiv.org/abs/2402.07307v2
- Date: Mon, 22 Apr 2024 04:15:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-23 23:34:03.646734
- Title: Self-Consistent Conformal Prediction
- Title(参考訳): 自己整合性コンフォーマル予測
- Authors: Lars van der Laan, Ahmed M. Alaa,
- Abstract要約: textitSelf-Consistent Conformal Prediction for regressionを紹介する。
モデル予測に対して有効な条件付きで、校正点予測と互換性のある予測間隔を提供する。
- 参考スコア(独自算出の注目度): 16.606421967131524
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In decision-making guided by machine learning, decision-makers may take identical actions in contexts with identical predicted outcomes. Conformal prediction helps decision-makers quantify uncertainty in point predictions of outcomes, allowing for better risk management for actions. Motivated by this perspective, we introduce \textit{Self-Consistent Conformal Prediction} for regression, which combines two post-hoc approaches -- Venn-Abers calibration and conformal prediction -- to provide calibrated point predictions and compatible prediction intervals that are valid conditional on model predictions. Our procedure can be applied post-hoc to any black-box model to provide predictions and inferences with finite-sample prediction-conditional guarantees. Numerical experiments show our approach strikes a balance between interval efficiency and conditional validity.
- Abstract(参考訳): 機械学習によって導かれる意思決定では、意思決定者は、同じ予測結果のコンテキストで同じ行動をとることができる。
コンフォーマルな予測は、意思決定者が結果のポイント予測の不確実性を定量化し、アクションのリスク管理を改善するのに役立つ。
この観点から,2つのポストホックアプローチ – Venn-Abersキャリブレーションとコンフォメーション予測 – を組み合わせることで,モデルの予測に有効な校正点予測と互換性のある予測間隔を提供する回帰式に対して,textit{Self-Consistent Conformal Prediction}を導入する。
提案手法は, ブラックボックスモデルに対して, 有限サンプル予測条件付き予測と推測を行うために, ポストホックで適用することができる。
数値実験により,本手法は区間効率と条件付き妥当性のバランスを示す。
関連論文リスト
- Relational Conformal Prediction for Correlated Time Series [56.59852921638328]
共形予測フレームワークと量子レグレッションに基づく分布自由な新しい手法を提案する。
グラフ深層学習演算子に基づく新しい共形予測手法を導入することにより,この空白を埋める。
我々のアプローチは、関連するベンチマークにおいて、正確なカバレッジを提供し、最先端の不確実性定量化をアーカイブする。
論文 参考訳(メタデータ) (2025-02-13T16:12:17Z) - Toward Conditional Distribution Calibration in Survival Prediction [6.868842871753991]
本研究では,モデルが観測した時点における個人生存確率を用いて,共形予測に基づく手法を提案する。
限界キャリブレーションと条件キャリブレーションの両方に関する理論的保証を提供し、15の多様な実世界のデータセットに対して広範囲にテストする。
論文 参考訳(メタデータ) (2024-10-27T20:19:46Z) - Provably Reliable Conformal Prediction Sets in the Presence of Data Poisoning [53.42244686183879]
コンフォーマル予測は、モデルに依存しない、分布のない不確実性定量化を提供する。
しかし、敵が訓練データと校正データを操作した場合の毒殺攻撃では、共形予測は信頼性が低い。
信頼性予測セット (RPS): 汚染下での信頼性保証を証明可能な共形予測セットを構築するための最初の効率的な方法を提案する。
論文 参考訳(メタデータ) (2024-10-13T15:37:11Z) - Split Conformal Prediction under Data Contamination [14.23965125128232]
データ汚染環境における分割共形予測の堅牢性について検討する。
構築した集合のカバレッジと効率に及ぼす劣化したデータの影響を定量化する。
本稿では,汚染ロバスト・コンフォーマル予測(Contamination Robust Conformal Prediction)と呼ぶ分類設定の調整を提案する。
論文 参考訳(メタデータ) (2024-07-10T14:33:28Z) - Does confidence calibration improve conformal prediction? [10.340903334800787]
適応型共形予測において、電流信頼度校正法がより大きな予測セットをもたらすことを示す。
温度値の役割を調べることにより,高信頼度予測が適応型等角予測の効率を高めることが確認された。
本稿では,予測セットの効率を向上させるために,新しい損失関数を備えた温度スケーリングの変種である Conformal Temperature Scaling (ConfTS) を提案する。
論文 参考訳(メタデータ) (2024-02-06T19:27:48Z) - Conformal Approach To Gaussian Process Surrogate Evaluation With
Coverage Guarantees [47.22930583160043]
適応型クロスコンフォーマル予測区間を構築する手法を提案する。
結果として生じる共形予測区間は、ベイズ的信頼性集合に類似した適応性のレベルを示す。
原子炉の蒸気発生器における閉鎖現象の高コスト・評価シミュレータのサロゲートモデリングの文脈において, 本手法の適用可能性を示す。
論文 参考訳(メタデータ) (2024-01-15T14:45:18Z) - Conditional validity of heteroskedastic conformal regression [12.905195278168506]
等角予測と分割等角予測は、統計的保証付き予測間隔を推定するための分布自由なアプローチを提供する。
近年の研究では、分割共形予測は、限界被覆に着目した場合、最先端の予測間隔を生み出すことが示されている。
本稿では,正規化やモンドリアン等式予測などの手法を用いて,予測間隔の構築方法について,新たな光を当てることを試みる。
論文 参考訳(メタデータ) (2023-09-15T11:10:46Z) - Improving Adaptive Conformal Prediction Using Self-Supervised Learning [72.2614468437919]
我々は、既存の予測モデルの上に自己教師付きプレテキストタスクを持つ補助モデルを訓練し、自己教師付きエラーを付加的な特徴として用いて、非整合性スコアを推定する。
合成データと実データの両方を用いて、効率(幅)、欠陥、共形予測間隔の超過といった付加情報の利点を実証的に実証する。
論文 参考訳(メタデータ) (2023-02-23T18:57:14Z) - Predictive Inference with Feature Conformal Prediction [80.77443423828315]
本稿では,特徴空間への共形予測の範囲を拡大する特徴共形予測を提案する。
理論的観点からは、特徴共形予測は軽度の仮定の下で正則共形予測よりも確実に優れていることを示す。
提案手法は,バニラ共形予測だけでなく,他の適応共形予測手法と組み合わせることができる。
論文 参考訳(メタデータ) (2022-10-01T02:57:37Z) - CovarianceNet: Conditional Generative Model for Correct Covariance
Prediction in Human Motion Prediction [71.31516599226606]
本稿では,将来の軌道の予測分布に関連する不確かさを正確に予測する手法を提案する。
我々のアプローチであるCovariaceNetは、ガウス潜在変数を持つ条件付き生成モデルに基づいている。
論文 参考訳(メタデータ) (2021-09-07T09:38:24Z) - Private Prediction Sets [72.75711776601973]
機械学習システムは、個人のプライバシーの確実な定量化と保護を必要とする。
これら2つのデシラタを共同で扱う枠組みを提案する。
本手法を大規模コンピュータビジョンデータセット上で評価する。
論文 参考訳(メタデータ) (2021-02-11T18:59:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。