論文の概要: Self-Consistent Conformal Prediction
- arxiv url: http://arxiv.org/abs/2402.07307v2
- Date: Mon, 22 Apr 2024 04:15:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-23 23:34:03.646734
- Title: Self-Consistent Conformal Prediction
- Title(参考訳): 自己整合性コンフォーマル予測
- Authors: Lars van der Laan, Ahmed M. Alaa,
- Abstract要約: textitSelf-Consistent Conformal Prediction for regressionを紹介する。
モデル予測に対して有効な条件付きで、校正点予測と互換性のある予測間隔を提供する。
- 参考スコア(独自算出の注目度): 16.606421967131524
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In decision-making guided by machine learning, decision-makers may take identical actions in contexts with identical predicted outcomes. Conformal prediction helps decision-makers quantify uncertainty in point predictions of outcomes, allowing for better risk management for actions. Motivated by this perspective, we introduce \textit{Self-Consistent Conformal Prediction} for regression, which combines two post-hoc approaches -- Venn-Abers calibration and conformal prediction -- to provide calibrated point predictions and compatible prediction intervals that are valid conditional on model predictions. Our procedure can be applied post-hoc to any black-box model to provide predictions and inferences with finite-sample prediction-conditional guarantees. Numerical experiments show our approach strikes a balance between interval efficiency and conditional validity.
- Abstract(参考訳): 機械学習によって導かれる意思決定では、意思決定者は、同じ予測結果のコンテキストで同じ行動をとることができる。
コンフォーマルな予測は、意思決定者が結果のポイント予測の不確実性を定量化し、アクションのリスク管理を改善するのに役立つ。
この観点から,2つのポストホックアプローチ – Venn-Abersキャリブレーションとコンフォメーション予測 – を組み合わせることで,モデルの予測に有効な校正点予測と互換性のある予測間隔を提供する回帰式に対して,textit{Self-Consistent Conformal Prediction}を導入する。
提案手法は, ブラックボックスモデルに対して, 有限サンプル予測条件付き予測と推測を行うために, ポストホックで適用することができる。
数値実験により,本手法は区間効率と条件付き妥当性のバランスを示す。
関連論文リスト
- Post-selection Inference for Conformal Prediction: Trading off Coverage
for Precision [0.0]
伝統的に、共形予測推論はデータに依存しない発見レベルの仕様を必要とする。
我々は,データ依存的誤発見レベルを考慮した同時共形推論を開発する。
論文 参考訳(メタデータ) (2023-04-12T20:56:43Z) - Distribution-Free Finite-Sample Guarantees and Split Conformal
Prediction [0.0]
分割共形予測は、最小分布自由仮定の下で有限サンプル保証を得るための有望な道を表す。
1940年代に開発された分割共形予測と古典的寛容予測との関連性を強調した。
論文 参考訳(メタデータ) (2022-10-26T14:12:24Z) - Predictive Inference with Feature Conformal Prediction [80.77443423828315]
本稿では,特徴空間への共形予測の範囲を拡大する特徴共形予測を提案する。
理論的観点からは、特徴共形予測は軽度の仮定の下で正則共形予測よりも確実に優れていることを示す。
提案手法は,バニラ共形予測だけでなく,他の適応共形予測手法と組み合わせることができる。
論文 参考訳(メタデータ) (2022-10-01T02:57:37Z) - Uncertainty estimation of pedestrian future trajectory using Bayesian
approximation [137.00426219455116]
動的トラフィックシナリオでは、決定論的予測に基づく計画は信頼できない。
著者らは、決定論的アプローチが捉えられない近似を用いて予測中の不確実性を定量化する。
将来の状態の不確実性に対する降雨重量と長期予測の影響について検討した。
論文 参考訳(メタデータ) (2022-05-04T04:23:38Z) - Dense Uncertainty Estimation [62.23555922631451]
本稿では,ニューラルネットワークと不確実性推定手法について検討し,正確な決定論的予測と確実性推定の両方を実現する。
本研究では,アンサンブルに基づく手法と生成モデルに基づく手法の2つの不確実性推定法について検討し,それらの長所と短所を,完全/半端/弱度に制御されたフレームワークを用いて説明する。
論文 参考訳(メタデータ) (2021-10-13T01:23:48Z) - CovarianceNet: Conditional Generative Model for Correct Covariance
Prediction in Human Motion Prediction [71.31516599226606]
本稿では,将来の軌道の予測分布に関連する不確かさを正確に予測する手法を提案する。
我々のアプローチであるCovariaceNetは、ガウス潜在変数を持つ条件付き生成モデルに基づいている。
論文 参考訳(メタデータ) (2021-09-07T09:38:24Z) - Private Prediction Sets [72.75711776601973]
機械学習システムは、個人のプライバシーの確実な定量化と保護を必要とする。
これら2つのデシラタを共同で扱う枠組みを提案する。
本手法を大規模コンピュータビジョンデータセット上で評価する。
論文 参考訳(メタデータ) (2021-02-11T18:59:11Z) - Short-term prediction of Time Series based on bounding techniques [0.0]
本稿では,新しい非パラメトリック手法を用いて時系列フレームワークの予測問題を再考する。
この革新は、予測誤差の上限を得るために、決定論的および決定論的確率的仮定の両方を考慮することである。
提案する予測器が予測スキームにおいて適切な結果を得ることができ、古典的非パラメトリック法に対する興味深い代替手段であることを示すためのベンチマークを含む。
論文 参考訳(メタデータ) (2021-01-26T11:27:36Z) - Counterfactual Predictions under Runtime Confounding [74.90756694584839]
本研究は, 過去のデータからすべての関連要因を抽出した環境で, 事実予測タスクについて検討する。
本稿では,この環境下での対実予測モデル学習のための2次ロバスト手法を提案する。
論文 参考訳(メタデータ) (2020-06-30T15:49:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。